Skip to main content

Numerical Optimal Control of Nonlinear Systems

  • Chapter
  • First Online:
Nonlinear Model Predictive Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In this chapter, we focus on numerically solving the constrained finite horizon nonlinear optimal control problems occurring in each iterate of the NMPC procedure. To this end, we first state standard discretization techniques to obtain a nonlinear optimization problem in standard form. Utilizing this form, we outline basic versions of the two most common solution methods for such problems, that is, Sequential Quadratic Programming (SQP) and Interior Point Methods (IPM). Furthermore, we investigate interactions between the differential equation solver, the discretization technique, and the optimization method and present several NMPC specific details concerning the warm start of the optimization routine. Finally, we discuss NMPC variants relying on inexact solutions of the finite horizon optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Appropriate step lengths \(\alpha _k\) will be added to these updates, below.

References

  1. Albersmeyer, J., Beigel, D., Kirches, C., Wirsching, L., Bock, H.G., Schlöder, J.: Fast nonlinear model predictive control with an application in automotive engineering. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 384, pp. 471–480. Springer, Berlin (2009)

    Google Scholar 

  2. Bell, M.L., Limebeer, D.J.N., Sargent, R.W.H.: Robust receding horizon optimal control. Comput. Chem. Eng. 20, 781–786 (1996) (Supplement 2, European Symposium on Computer Aided Process Engineering 6)

    Google Scholar 

  3. Best, M.J.: An algorithm for the solution of the parametric quadratic programming problem. Applied Mathematics and Parallel Computing, pp. 57–76 (1996)

    Google Scholar 

  4. Bock, H., Diehl, M., Kühl, P., Kostina, E., Schlöder, J., Wirsching, L.: Numerical methods for efficient and fast nonlinear model predictive control. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 358, pp. 163–179. Springer, Berlin (2007)

    Google Scholar 

  5. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981)

    Google Scholar 

  6. Bock, H.G., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress Budapest, Pergamon, Oxford, pp. 242–247 (1984)

    Google Scholar 

  7. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. II. The new algorithm. J. Inst Math. Appl. 6, 222–231 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bryson, A.E., Ho, Y.C.: Applied optimal control. Hemisphere Publishing Corp. Washington, D. C. Optimization, estimation, and control, Revised printing(1975)

    Google Scholar 

  9. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The watchdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Stud. 16, 1–17 (1982) (Algorithms for constrained minimization of smooth nonlinear functions)

    Google Scholar 

  10. Coleman, T.F., Conn, A.R.: Second-order conditions for an exact penalty function. Math. Program. 19(2), 178–185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davidon, W.C.: Variable metric method for minimization. Research and Dev. Rep. ANL-5990 (Rev.), Argonne Nat. Lab. (1959)

    Google Scholar 

  12. Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, University of Heidelberg (2001)

    Google Scholar 

  13. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  14. Diehl, M., Findeisen, R., Allgöwer, F., Bock, H.G., Schlöder, J.P.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory Appl. 152, 296–308 (2005)

    Article  Google Scholar 

  15. Diehl, M., Ferreau, H., Haverbeke, N.: Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation, vol. 384, pp. 391–417. Springer, Heidelberg (2009)

    Google Scholar 

  16. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38(1), 202–226 (2000) (electronic)

    Google Scholar 

  17. Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to overcome the limitations of explicit MPC. Int. J. Robust Nonlinear Control 18(8), 816–830 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Mathematics in Science and Engineering, vol. 165. Academic Press Inc., Orlando (1983)

    Google Scholar 

  19. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970)

    Article  MATH  Google Scholar 

  20. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

  21. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldfarb, D.: A family of variable metric methods derived by variational means. Math. Comput. 24, 23–26 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gould, N.I.M., Orban, D., Toint, P.L.: Numerical methods for large-scale nonlinear optimization. Acta Numer. 14, 299–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Graichen, K., Kugi, A.: Stability and incremental improvement of suboptimal MPC without terminal constraints. IEEE Trans. Autom. Control 55, 2576–2580 (2010)

    Article  MathSciNet  Google Scholar 

  25. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Google Scholar 

  26. Gyurkovics, E., Elaiw, A.M.: Conditions for MPC based stabilization of sampled-data nonlinear systems via discrete-time approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 358, pp. 35–48. Springer, Berlin (2007)

    Google Scholar 

  27. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol. 14, 2 edn. Springer, Berlin (1996)

    Google Scholar 

  28. Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22(3), 297–309 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Mathematical Programming with Data Perturbations. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284. Dekker, New York (1998)

    Google Scholar 

  30. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill Book Co., New York (1969) (Reprinted by SIAM Publications 1995)

    Google Scholar 

  31. Maratos, N.: Exact penalty function algorithms for finite dimensional and control optimization problems. PhD thesis, University of London (1978)

    Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    Google Scholar 

  33. Panier, E.R., Tits, A.L.: A superlinearly convergent feasible method for the solution of inequality constrained optimization problems. SIAM J. Control Optim. 25(4), 934–950 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis (Proceedings of the 7th Biennial Conference, University of Dundee, Dundee, 1977), pp. 144–157. Lecture Notes in Mathematics, vol. 630. Springer, Berlin (1978)

    Google Scholar 

  35. Powell, M.J.D.: Convergence properties of algorithms for nonlinear optimization. SIAM Rev. 28(4), 487–500 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  37. Schittkowski, K.: The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. I. Convergence analysis. Numer. Math. 38(1), 83–114 (1981/82)

    Google Scholar 

  38. Schittkowski, K.: On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Op. Stat. Ser. Optim. 14(2), 197–216 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Texts in Applied Mathematics, vol. 12, 3rd edn. Springer, New York (2002) (Translated from the German by R. Bartels, W. Gautschi and C. Witzgall)

    Google Scholar 

  41. Zavala, V.M., Biegler, L.T.: Nonlinear programming strategies for state estimation and model predictive control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control, Lecture Notes in Control and Information Sciences, vol. 384, pp. 419–432. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Grüne .

Problems

Problems

  1. 1.

    Consider the constraint set \(\varOmega = \{ (z_1, z_2, z_3) \mid z_3^2 \ge z_1^2 + z_2^2 \}\). Show that while \(\varOmega \) is a set with nonsmooth boundary, the set itself is described by a smooth function.

  2. 2.

    One can trivially construct an example of a feasible set \(\varOmega \) and a feasible point \(z^\star \) at which the LICQ (see Definition 12.14) is satisfied but the constraints are nonlinear. Prove whether or not the reverse situation holds, i.e., the active constraints are linear but the LICQ is not satisfied.

  3. 3.

    Consider the constraints

    $$\begin{aligned} z_2 \le z_1^3 \qquad \text {and} \qquad z_2 \ge 0. \end{aligned}$$

    Show that at \(z = (0, 0)\) we have \(T_\varOmega (z) \subsetneq \mathscr {F}(z)\).

  4. 4.

    Similar to the idea of Condensing in Sect. 12.4 suppose that \(s_j\) is a vector of dimension d allowing to get rid of the index function \(\iota (\cdot )\) and that the index function \(\varsigma (\cdot ): \{0, \ldots , r_s - 1\} \rightarrow \{0, \ldots , N\}\) is strictly monotonically increasing with \(\varsigma (0) = 0\). Consider the corresponding linearized continuity condition

    $$\begin{aligned} S(z) + \nabla _z S(z)^\top \varDelta s = 0 \end{aligned}$$
    (12.75)

    where again \(\varDelta s\) denotes the part of the search direction d corresponding to the shooting nodes. Show that \(\varDelta s_1\), \(\ldots \), \(\varDelta s_{r_s - 1}\) can be computed from \(\varDelta s_0\) which is the search direction for the shooting node corresponding to the initial value. Hint: Reformulate the continuity condition

    $$\begin{aligned} \left[ s_{j + 1} - f \left( x_u(\varsigma (j + 1) - 1, x_0), u(\varsigma (j + 1) - 1)) \right) \right] _{j \in \{0, \ldots , r_s - 1\}} = 0, \end{aligned}$$
    (12.76)

    to get rid of all state vectors \(x_u(k, x_0)\) which are not shooting node vectors, i.e., for which \(\varsigma (j) \not = k\).

  5. 5.

    Formulate the optimization problem in standard form for problem (OCP\(_\text {N,e}^\text {n}\)) using

    1. (a)

      recursive elimination and an additional endpoint constraint \(\mathbb {X}_0(n) = \{ x_*\}\).

    2. (b)

      multiple shooting with shooting vector \(s_N \in \mathbb {R}^d\) with initial value \(s_N = x_*\) inducing the constraints

      $$\begin{aligned} S(z) = \left[ s_N - f \left( x_u(N - 1, x_0), u(N - 1)) \right) \right] = 0. \end{aligned}$$

    Using either of the presented optimization methods, show that the iterates will not coincide in general.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grüne, L., Pannek, J. (2017). Numerical Optimal Control of Nonlinear Systems. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-46024-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46024-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46023-9

  • Online ISBN: 978-3-319-46024-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics