Skip to main content

Induction Heating

  • Chapter
  • First Online:
Fundamentals of Electroheat

Abstract

Induction heating uses the heat produced by currents induced within a conducting body exposed to the alternating magnetic field produced by AC current flowing in an inductor coil. The main advantages of this process are transmission of electromagnetic energy from the inductor to the workpiece without direct contact, as well as fast and selective heating in defined regions of the workpiece. The first part of the chapter deals with the distributions of induced current and power density within a cylindrical body in longitudinal magnetic field, the equivalent impedance, the electrical efficiency and the quality and power factors of the inductor-load system. In the second paragraph, we will study the transient temperature pattern and the influence of variations of material characteristics during the heating of magnetic or non-magnetic workpieces. The third part deals with the calculation of inductors with approximate, analytical and numerical methods. Numerical examples are included to illustrate the calculation procedures. In the last part of the chapter the main industrial applications of induction heating are presented: in particular induction crucible furnaces, channel induction furnaces, mass through heating prior hot working of metals and heat treatments for induction surface hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hot working  operation is the processes of plastic deformation of a metal at a temperature of or above 50 % of the melting temperature, variable depending on material and type of work.

  2. 2.

    N.B.—In this approximation it is also neglected the time interval corresponding to the transition of the Curie point, during which the absorbed energy, equal to 17.7 kWh/t (or 500 Ws/cm³), does not produce increase of temperature.

References

  1. Langer, E.: Theory of Induction and Dielectric Heating, 291 pp. Československà Academie, Praga (1964) (in Czechoslovak)

    Google Scholar 

  2. Sundberg, Y.: Induction Heating, p. 165. Västra Aros Tryckeri Aktiebolag, Västerås (1965)

    Google Scholar 

  3. Kuvaldin, A.B.: Low Temperature Induction Heating of Steel, 111 pp. Energija, Moskow (1976) (in Russian)

    Google Scholar 

  4. Zedler, T., Nikanorov, A., Nacke, B.: Investigation of Relative Magnetic Permeability as Input Data for Numerical Simulation of Induction Surface Hardening. Int. Scientific Colloquium MEP 2008, Hanover (2008)

    Google Scholar 

  5. Di Barba, P., Lowther, D.A., Dughiero, F., Forzan, F., et al.: A benchmark problem of induction heating. In: International Conference on HES-16, June 2016, Padua (2016)

    Google Scholar 

  6. Rudnev, V., Totten, G. (eds.): Induction Heating and Heat Treatment Handbook, Vol. 4C, 820 pp. ASM Heat Treating Society, ASM International (2014). ISBN-13 978-1-62708-012-5

    Google Scholar 

  7. Hegewaldt, F.: Induktives Oberflächenhärten. Induktionsöfen 62–84 (1961)

    Google Scholar 

  8. Neiman, L.R.: Skin Effect in Ferromagnetic Bodies, 188 pp. State Energetic, Leningrad (1949) (in Russian)

    Google Scholar 

  9. Lupi, S., Forzan, M., Aliferov, A.: Induction and Direct Resistance Heating—Theory and Numerical Modeling, 370 pp. Springer Int. Publishing, Switzerland (2015). ISBN 978-3-319-03478-2

    Google Scholar 

  10. Nemkov, V.S., Demidovich, V.B.: Theory and Calculation of Installations of Induction Heating, 280 pp. Energoatomizdat, Leningrado (1988) (in Russian)

    Google Scholar 

  11. Sluhockiǐ, A.E., Nemkov, V.S., Pavlov, N.A., Bamunier, A.B.: Induction Heating Installations, 325 pp. Energoizdat, Leningrad (1981) (in Russian)

    Google Scholar 

  12. Lupi, S., Forzan, M., Aliferov, A., Meleshko, A.: Resistance of inductors for induction heating of cylindrical internal surfaces. Elektrotechnika 5, 43–47 (2010) (in Russian)

    Google Scholar 

  13. Mahmudov, K.M., Nemkov, V.S., Sluhockiĭ, A.E.: Methods of Calculation of Inductors, pp. 3–27, n. 114. Izvestija of Leningrad Electrotechnical Institut LETI, Leningrad (1973) (in Russian)

    Google Scholar 

  14. Lavers, I.D., Biringer, P.P.: An analysis of the coreless induction furnace: axial distribution of electric and magnetic fields. Elektrowaerme int. 29(4), 232–237 (1971)

    Google Scholar 

  15. Lupi, S., Morini, A.: Induction heating of cylindrical rods using multiple coils. In: Proceedings of Institute of Electrical Engineering, UPEE, 69/13 (in Italian) and Elektrowaerme int. 29(12), 663–667 (1971)

    Google Scholar 

  16. Lavers, I.D., Biringer, P.P.: An Improved Method of Calculating the Induction Heating Equivalent Circuit Parameters, n. 602. VII UIE Congress, Warsaw (1972)

    Google Scholar 

  17. Lupi, S., Nemkov, V.: The calculation of inductors with periodical fields. Elektrowaerme int. 35(2), 103–109 (1977)

    Google Scholar 

  18. Lupi, S., Nemkov, V.: Riscaldamento ad induzione delle superfici esterne ed interne di cilindri bimetallici cavi mediante induttori corti. L’Elettrotecnica 66(2), 141–147 (1979) (in Italian)

    Google Scholar 

  19. Lupi, S., Nemkov, V.S.: Il calcolo analitico di sistemi ad induzione cilindrici, pp. 43–47, n. 6. Elektrichestvo, Energija (1978) (in Russian)

    Google Scholar 

  20. Lavers, J.D.: State of the art of numerical modeling for induction processes. In: HES-07—Heating by Electromagnetic Sources, Padua, pp. 13–24, 19–22 June 2007 (2007)

    Google Scholar 

  21. Lavers, J.D.: An efficient method of calculating parameters for induction and resistance heating installations with magnetic loads. IEEE Trans. Indus. Appl. IA-14(5), 427–432 (1978)

    Google Scholar 

  22. Lupi, S.: Appunti di Elettrotermia. Teaching Notes, 457 pp. Libreria Progetto, Padova (2005) (in Italian)

    Google Scholar 

  23. Lupi, S., Mühlbauer, A., Nemkov, V., et al.: Induction Heating Industrial Applications, pp. 144. U.I.E.—International Union for Electroheat, WG Induction Heating, Paris (1992)

    Google Scholar 

  24. Électricité de France: Induction Conduction électrique dans l’industrie, 780 pp. Electra - Dopee85, Paris (1996). ISBN 2-86995-022-5 (in French)

    Google Scholar 

  25. Mühlbauer, A.: History of Induction Heating and Melting, 202 pp. Vulkan-Verlag GmbH, Essen (2008). ISBN 978-3-8027-2946-1

    Google Scholar 

  26. Lupi, S.: Research in the Field of Induction Heating at the University of Padua, 33 pp. Lecture given at the Dept. of Electrical Engineering, Dec. 13, 2010. SGE, Padua (2010)

    Google Scholar 

  27. Lupi, S.: Survey on induction heating development in Italy. In: HISTELCON 2012, Pavia (2012)

    Google Scholar 

  28. Brev. Ital. Reg. Gen. N. 140 341, Reg Atti N. 245 – Descrizione del trovato che ha per titolo Forno ad induzione a frequenze elevate e dispositivo per la sua connessione con gli apparecchi generatori (in Italian)

    Google Scholar 

  29. Northrup, E.F.: Usa Patents No. 1 286 394; No. 1 286 395, Dec. 3, 1918; No. 1 297 393, March 18, 1919; No. 1 328 336, Jan. 20, 1920; No. 1 330 133, Feb. 10, 1920

    Google Scholar 

  30. Northrup, E.F.: Principles of induction heating with high frequency currents. Trans Amer. Electrochem. Soc. 35 (1919)

    Google Scholar 

  31. Northrup, E.F.: Recent progress in high frequency inductive heating. Trans. Amer. Electrochem. Soc. 39 (1921)

    Google Scholar 

  32. Nacke, B., Baake, E., Lupi, S., Dughiero, F., Forzan, M., et al.: Theoretical Background and Aspects of Electrotechnologies, 356 pp. Physical Principles and Realization. Intensive Course Basic I. St. Petersburg, Publishing House of ETU (2012). ISBN 978-5-7629-1237-2

    Google Scholar 

  33. Mühlbauer, A: Industrielle Elektrowärme-technik, 400 pp. Vulkan-Verlag, Essen (1992). ISBN 3-8027-2903-X (in German)

    Google Scholar 

  34. Conrad, H., Mühlbauer, A., Thomas, R.: Elektrothermischen Verfahrenstechnik, 338pp. Vulkan-Verlag, Essen (1994). ISBN 3-8027-2911-0

    Google Scholar 

  35. Mühlbauer, A.: Über die elektrodynamichen Kräfte in der Schmelze von Induktionsöfen. Elektrowärme, Bd. 25(12), 461–473 (1967)

    Google Scholar 

  36. Fomin, N.I., Zatulovskiǐ L.M.: Electrical Furnaces and Induction Heating Installations, 247 pp. Metallurghia, Moskow (1979) (in Russian)

    Google Scholar 

  37. Hegewaldt, F.: Forni ad induzione per la fonderia. La fonderia italiana (4), 105–117 (1973) (in Italian)

    Google Scholar 

  38. Baake, E., Jakovics, A., Kirpo, M.: Influence of the channel design on the heat and mass exchange of induction channel furnace. In: HES-10—Heating by Electromagnetic Sources, Padua, pp. 155–162, May 18–21

    Google Scholar 

  39. Wirtsch, D., Sonnenschein, P.: Induktives Erwärmen zum Umformen von Stahl - Gesenkschmiede, 23 pp. RWE AG-Information zentrum, Essen (1989) (in German)

    Google Scholar 

  40. Rudnev, V., Loveless, D., Cook, R., Black, M.: Handbook of Induction Heating, 777 pp. Marcel Dekker, Inc., New York (2003). ISBN 0-8247-0848-2

    Google Scholar 

  41. Fasholz, J., Orth, G.: Induktive Erwärmung – Physikalische Grundlagen un technische Anwendungen, 103 pp. RWE Energie Aktiegesellschaft, Essen (1991) (in German)

    Google Scholar 

  42. Geisel, H.: Konduktives oder induktives Erwärmen von Werkstücken grosser Abmessungen mit Frequenzen f ≤ 50 Hz. Elektrowärme international 44(B3), 107–115 (1986)

    Google Scholar 

  43. Lauster, F.: Manuel d’Electrothermie Industrielle, 315 pp. Dunod, Paris (1968) (in French)

    Google Scholar 

  44. Poncin, R.: New developments in billet heating. In: UNIPEDE—Workshop on Reheating of Metals by Induction, ENEL, Milano, pp. 29–44, March 23 1987 (1987)

    Google Scholar 

  45. Baake, E.: Energetische und technische Bewertung industrieller Erwärmungsverfharen. Elektrowärme International B1, 7–13 (1997)

    Google Scholar 

  46. Boergerdin, R., Baake, E., Drewek, R., Joern, K.U., Mühlbauer, A.: Reduction of scale, energy consumption and CO2 emission of forging processes. In: International Congres EPM—Electromagnetic Processing of Materials, Paris, pp. 61–66, May 27–29 1997 (1977)

    Google Scholar 

  47. Nacke, B., Baake, E.: Reduction of CO2 emissions using efficient melting and heating technologies. In: HES-10—Heating by Electromagnetic Sources, Padua, pp. 263–270, May 18–21 2010 (2010)

    Google Scholar 

  48. Semiatin, S.L., Stutz, D.E.: Induction Heat Treatment of Steel, 308 pp. ASM—American Society for Metals, Metals Park (1986). ISBN 0-87170-211-8

    Google Scholar 

  49. Davies, J., Simpson, P.: Induction Heating Handbook, 419 pp. McGraw-Hill Co. (1979). ISBN 0-07-084515-8

    Google Scholar 

  50. Kolbe, E., Schuster, R.: Möglichkeiten zur Vorausbestimmung der Einhärtetiefe beim Induktionshärten. Elektrowärme, Band 23(12), 535–544 (1965)

    Google Scholar 

  51. Lozinskii, M.G.: Industrial Applications of Induction Heating, 672 pp. Pergamon Press, London (1969)

    Google Scholar 

  52. Zischka, K.A.: Beitrag zur matematischen Theorie der Induktionshärtung. Teil 1: Elektrischer Teil, Elektrowärme International, Band 28(3), 135–142; Teil 2: Thermischer Teil, 142–149 (1970)

    Google Scholar 

  53. Kegel, K., Lacmann, B.: Vorausbestimmung der Einhärtungstiefe bei der induktiven Oberflächenhärtung. Elektrowärme, Band 24(12), 419–424 (1966)

    Google Scholar 

  54. Atlas of Isothermal transformation and Cooling Transformation Diagrams. American Society of Metals, Metals Park (1977)

    Google Scholar 

  55. Brunst, W.: Die induktive Wärmebehandlung, p. 237. Springer, Berlin (1957)

    Book  Google Scholar 

  56. Hougton Italia: Fast Hardening Oils. Servizio Tecnico Ricerca-Produzione, Genova

    Google Scholar 

  57. Hougton Italia: Principles and Hardening Techniques, 44 pp. Servizio Tecnico Ricerca-Produzione, Genova

    Google Scholar 

  58. Koller, L.: Einfluss der geometrischen Parameter von Induktor-Einsatz-Systemen auf die Richtung der Wirbelströme im Einsatz. Elektrowarme International 40, B5 – Oktober, B247–B252 (1982)

    Google Scholar 

  59. Brown, G.H., Hoyler, C.N.: Theory and Application of Radio-Frequency Heating, 370 pp. D. Van Nostrand Inc., New York (1947)

    Google Scholar 

  60. Merigliano, L.: Induttori per trattamenti termici ad alta frequenza, n. 706. Rendiconti dell’AEI, Roma (1957) (in Italian)

    Google Scholar 

  61. Ruffini, R.T., Nemkov, V., Goldstein, R.: Materials for high frequency magnetic flux controlproperties and applications. In: HIS-01—Heating by Internal Sources, pp. 13–19, Padua Sept. 12–14 2001 (2001)

    Google Scholar 

  62. Di Pieri, C., Lupi, S., Crepaz, G.: The design of induction heating machines for single-shot hardening of large ring-gears or gear-wheels. In: UIE-11—XI International Congress on Electroheat, Malaga (Spain), Oct. 3–7 1988, n. B 7.6 (1988)

    Google Scholar 

  63. Di Pieri, C., Lupi, S., Crepaz, G.: Moderni impianti di riscaldamento ad induzione. L’Elettrotecnica LXXV(12), 1185–1197 (1988) (in Italian)

    Google Scholar 

  64. Nacke, B., Wrona: Design of complex induction hardening problems by the use of numerical simulation. In: REI’05—International Conference on Research in Electro-technology and Applied Informatics, pp. 159–164, August 31–Sept. 3, 2005, Katowice (2005)

    Google Scholar 

  65. Sluhockiǐ, A.E., Ryskiǐ, S.E.: Induction Heating Inductors, 263 pp. Energija, Leningrad (1974) (in Russian)

    Google Scholar 

  66. Lupi, S., Rubatto, G.: Tempra di ingranaggi mediante riscaldamento ad induzione con due frequenze. AIM—Associazione Italiana di Metallurgia, Giornata di studio su Trattamenti superficiali, Milano (Italy), 31 Marzo (1998) (in Italian)

    Google Scholar 

  67. Lupi, S., Forzan, M., Aliferov, A.: Induction and Direct Resistance Heating, Chap. 4.6, 370 pp. Springer International Publishing, Switzerland (2015). ISBN 978-3-319-03478-2

    Google Scholar 

  68. Zinn, S.: Quenching of Induction Heated Steel. ASM Handbook, Vol. 4C, Induction Heating and Heat Treatment, pp. 87–102. ASM International (2014)

    Google Scholar 

  69. Nemkov, V., Goldstein, R.: Computer simulation for fundamental study and practical solutions to induction heating problems. In: Proceedings of HIS-01—International Seminar on Heating by Internal Sources, Padua, pp. 435–442, 12–14 September 2001 (2001)

    Google Scholar 

  70. www.cedrat.com/software/flux/flux.html

  71. Ferguson, L., Zhichao Li, Nemkov, V., Goldstein, R., Jackowski, J., Fett, G.: Modeling stress and distortion of full-float truck axle during induction hardening process. In: HES-13—Heating by Electromagnetic Sources, Padua, pp. 109–116, 21–24 May 2013 (2013)

    Google Scholar 

  72. Lavers, J.D.: An analysis of the coreless induction furnace: load end effects. Elektrowärme International 29(7), 390–396 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lupi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lupi, S. (2017). Induction Heating. In: Fundamentals of Electroheat. Springer, Cham. https://doi.org/10.1007/978-3-319-46015-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46015-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46014-7

  • Online ISBN: 978-3-319-46015-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics