Skip to main content

Estimation of Air-Sea CO2 Exchange and Decadal Change of Surface Water fCO2 in a Shallow Continental Shelf Using in Situ and Remote Sensing Data During Winter

  • Chapter
  • First Online:
Environment and Earth Observation

Abstract

The air-sea CO2 exchange (fCO2) was estimated in the outer estuary to offshore transition zone of the northern Bay of Bengal using in situ measurements and remote sensing data obtained from moderate resolution imaging spectroradiometer (MODIS) and advanced very high resolution radiometer (AVHRR). The in situ measurements were done during winter months (December, January and February) of the year 2011–12. Sea surface CO2 fugacity (fCO2), sea surface temperature (SST) and chlorophyll-a were measured in situ to develop an empirical relationship with fCO2 but only the SST showed a significant correlation (r 2 = 0.55, n = 64, p < 0.05). This relationship was used to assess fCO2 (water) and its temporal change in decadal scale from the year 2002–2003 to 2011–2012 of the winter months using remotely sensed SST data. The study area acted as a mild sink for atmospheric CO2 at the mean rate of −28 µmol m−2 h−1 (MODIS derived) to −40 µmol m−2 h−1 (AVHRR derived). An overall winter-to-winter increasing trend of fCO2 was observed in the last decade which is accompanied by a similar decrease in the chlorophyll-a concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Álvarez M, Fernández E, Pérez FF (1999) Air-sea CO2 fluxes in a coastal embayment affected by upwelling: Physical versus biological control. Oceanol Acta 22(5):499–515

    Article  Google Scholar 

  • Akhand A, Chanda A, Dutta S, Hazra S (2012) Air-water carbon dioxide exchange dynamics along the outer estuarine transition zone of Sundarban, northern Bay of Bengal, India. Indian J Geo-Mar Sci 41(2):111–116

    Google Scholar 

  • Akhand A, Chanda A, Dutta S, Manna S, Hazra S, Mitra D, Rao KH, Dadhwal VK (2013) Characterizing air-sea CO2 exchange dynamics during winter in the coastal water off Hugli-Matla estuarine system in the northern Bay of Bengal. J Oceanogr, India. doi:10.1007/s10872-013-0199-z

    Google Scholar 

  • Bates NR, Hansell DA, Carlson CA, Gordon LI (1998a) Distribution of CO2 species, estimates of net community production, and air-sea CO2 exchange in the Ross Sea polynya. J Geophys Res 103:2883–2896

    Article  Google Scholar 

  • Bates NR, Takahashi T, Chipman DW, Knapp AH (1998b) Variability of pCO2 on diel to seasonal time scales in the Sargasso Sea. J Geophys Res 103:15567–15585

    Article  Google Scholar 

  • Biswas H, Mukhopadhyay SK, De TK, Sen S, Jana TK (2004) Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal. India. Limnol Oceanogr 49(1):95–101

    Article  Google Scholar 

  • Borges AV, Frankignoulle M (2002) Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochem 59:41–67

    Article  Google Scholar 

  • Cai W-J (2003) Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume. Geophys Res Lett 30(2):1032. doi:10.1029/2002GL016312

    Article  Google Scholar 

  • Canadell JG, Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Nat Acad Sci USA 104:18870–18886

    Article  Google Scholar 

  • Carr ME (2001) Remote Sensing tools to study ocean biogeochemistry, The state of the art, Sessao Especial-Workshops, Anais X SBSR, Foz do Iguacu, 21–26, INPE, pp 779–784

    Google Scholar 

  • Chen L, Xu S, Gao Z, Chen H, Zhang Y, Zhan J, Li W (2011) Estimation of monthly air-sea CO2 flux in the southern Atlantic and Indian Ocean using in-situ and remotely sensed data. Remote Sens Environ 115:1935–1941

    Article  Google Scholar 

  • Chou WC, Gong GC, Tseng CM (2011) The carbonate system in the East China Sea in winter. Mar Chem 123:44–55

    Article  Google Scholar 

  • Cooper DJ, Watson AJ, Ling RD (1998) Variation of pCO2 along a North Atlantic shipping route (U.K. to Caribbean): a year of automated observations. Mar Chem 60:147–164

    Article  Google Scholar 

  • Cole CV, Vaidyaraman PP (1966) Salinity distribution and effect of freshwater flows in the Hooghly River. Paper presented Proceedings Tenth Conference on Coastal Engineering, Tokyo (American Society of Civil Engineers, New York) pp 1312–1434

    Google Scholar 

  • De Grandpre MD, Olbu GJ, Beatty CM, Hammar TR (2002) Air-sea CO2 fluxes on the US middle Atlantic bight. Deep-Sea Res II 49:4355–4367

    Article  Google Scholar 

  • De la Paz M, Gómez-Parra A, Forja J (2009) Seasonal variability of surface fCO2 in the Strait of Gibraltar. Aquat Sci 71(1):55–64

    Article  Google Scholar 

  • Doney SC, Tilbrook B, Roy S, Metzl N, Le Quere C, Hood M, Feely RA, Bakker D (2009) Surface-ocean CO2 variability and vulnerability. Deep-Sea Res II 56:504–511

    Article  Google Scholar 

  • Grasshoff K (1983) Determination of nutrients. In: K. Gras-shoff, M. Ehrhard, K. Kremling [eds.], Methods of seawater analysis. Verlag Chemie, pp 125–187

    Google Scholar 

  • Hardman-Mountford N, Litt E, Mangi S, Dye S, Schuster U, Bakker D, Watson A (2009) Ocean uptake of carbon dioxide (CO2). MCCIP Briefing Notes www.mccip.org.uk. Accessed 29 March 2015

  • Khoo KH, Ramette RW, Culberson CH, Bates RG (1977) Determination of hydrogen ion concentrations in seawater from 5 to 40 °C: standard potentials at salinities from 20 to 45‰. Anal Chem 49(1):29–34

    Article  Google Scholar 

  • Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:L15607. doi:10.1029/2010GL043691

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC—105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Liss PS, Merlivat L (1986) Air sea gas exchange rates: Introduction and synthesis. In: Buat-Menard P (ed) The role of air sea exchange in geochemical cycling, D. Reidel, Dordrecht, Holland, pp 113–129

    Chapter  Google Scholar 

  • Lohrenz SE, Cai WJ (2006) Satellite ocean color assessment of air–sea fluxes of CO2 in a river-dominated coastal margin. Geophys Res Lett 33:L01601. doi:10.1029/2005GL023942

    Article  Google Scholar 

  • Mackenzie FT, Ver LM, Lerman A (2000) Coastal-zone biogeochemical dynamics under global warming. Int Geol Rev 42:193–206

    Article  Google Scholar 

  • Mukhopadhyay SK, Jana TK, De TK, Sen S (2000) Measurement of exchange of CO2 in mangrove forest of Sundarbans using micrometeorological method. Trop Ecol 41(1):57–60

    Google Scholar 

  • Mukhopadhyay SK, Biswas H, De TK, Sen S, Jana TK (2002) Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. J Environ Monit 4:549–552

    Article  Google Scholar 

  • Olsen A, Trinanes JA, Wanninkhof R (2004) Sea-air flux of CO2 in the Caribbean Sea estimated using in-situ and remote sensing data. Remote Sens Environ 89:309–325

    Article  Google Scholar 

  • Ono T, Saino T, Kurita N, Sasaki K (2004) Basin-scale extrapolation of shipboard pCO2 data by using satellite SST and Chl a. Int J Remote Sens 25:3803–3815

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1992) A manual of chemical and biological methods for sea water analysis. Pergamon Press, New York

    Google Scholar 

  • Peng TH, Takahashi T, Broecker WS, Olafsson J (1987) Seasonal variability of carbon dioxide, nutrients and oxygen in the northern North Atlantic surface water: observations and a model. Tellus 39B:439–458

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  Google Scholar 

  • Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D, Nampoothiri G (1991) Wind driven coastal upwelling along the western boundary of the Bay of Bengal during southwest monsoon. Cont Shelf Res 11:397–408

    Article  Google Scholar 

  • Stephens MP, Samuels G, Olson DB, Fine RA (1995) Sea-air flux of CO2 in the North Pacific using shipboard and satellite data. J Geophys Res 100:13571–13583

    Article  Google Scholar 

  • Sweeney C (2002) The annual cycle of surface water CO2 and O2 in the Ross Sea: A model for gas exchange on the continental shelves of Antarctic: Biogeochemistry of the Ross Sea. Antarct Res Ser 78:295–312

    Article  Google Scholar 

  • Takahashi T, Sutherland S, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzi N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Ollafson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56:554–577

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater. The solubility of a nonideal gas. Mar Chem 2:201–215

    Article  Google Scholar 

  • Zhai WD, Dai MH, Cai WJ, Wang YC, Wang ZH (2005) High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Mar Chem 93:21–32

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the National remote sensing Centre, (NRSC) Department of Space, Government of India for funding the research work. Abhra Chanda is grateful to the Department of Science and Technology, Govt. of India for providing the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Akhand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akhand, A. et al. (2017). Estimation of Air-Sea CO2 Exchange and Decadal Change of Surface Water fCO2 in a Shallow Continental Shelf Using in Situ and Remote Sensing Data During Winter. In: Hazra, S., Mukhopadhyay, A., Ghosh, A., Mitra, D., Dadhwal, V. (eds) Environment and Earth Observation. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-46010-9_9

Download citation

Publish with us

Policies and ethics