Skip to main content

Habitat Suitability Modelling for Sambar (Rusa unicolor): A Remote Sensing and GIS Approach

  • Chapter
  • First Online:
Environment and Earth Observation

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 815 Accesses

Abstract

The concept of wildlife species conservation starts with the identification of their suitable habitat as it provides essential information for wildlife refuge design and management. In this study, multiple logistic regression is integrated with remote sensing and geographic information system to evaluate the suitable habitats available for sambar (Rusa unicolor) in Chandoli Tiger Reserve, Maharashtra, India (17° 04′ 00″N to 17° 19′ 54″N and 73° 40′ 43″E to 73° 53′ 09″E). Satellite imageries of LISS-III of IRS-P6 of study area were digitally processed. To generate collateral data topographic maps were analysed in a GIS framework. Layers of different variables such as land use land cover, forest density, proximity to disturbances and water resources and a digital terrain model were created from satellite imageries and topographic maps. These layers along with GPS location of sambar presence/absence and multiple logistic regression (MLR) techniques were integrated in a GIS environment to model habitat suitability index of sambar. The results indicate that approximately 69.92 km2 (24 %) of the forest of tiger reserve was least suitable for sambar, whereas 82.60 km2 (28 %) was moderately suitable, 88.25 km2 (30 %) suitable and 54.01 km2 (18 %) was highly suitable. The accuracy level of this model was 80.2 %. The model advocates that forests of this area are most appropriate for declaring it as a reserve for sambar conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andries AM, Gulinck H, Herremans M (1994) Spatial modeling of the barn owl Tyto alba habitat using landscape characteristics derived from SPOT data. Ecography 17:278–287

    Article  Google Scholar 

  • Anonymous (2005) Management plan of Chandoli National Park. Kolhapur Forest Division, Maharashtra, India

    Google Scholar 

  • ArcView 3.2 (1999) Environmental Systems Research Institute. Redlands, CA, USA

    Google Scholar 

  • Bio AMF, Becker PD, Bie ED, Huybrechts W, Wassen M (2002) Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biodivers Conserv 11:2189–2216

    Article  Google Scholar 

  • Braunisch C, Bullmann K, Graf RF, Hirzel AH (2008) Living on the edge—modeling habitat suitability for species at the edge of their fundamental niche. Ecol Model 214(2–4):153–167

    Article  Google Scholar 

  • Brian L, West E (1997) GIS modeling of elk calving habitat in a prairie environment with statistics. Photogram Eng Remote Sens 63:161–167

    Google Scholar 

  • Bright LR (1984) Assessment of elk habitat for resource management and planning activities from Landsat mapping products. Am Soc Photogram Remote Sens Renew Resour Manag. Falls Church, Virginia, USA, pp 101–108

    Google Scholar 

  • Campbell JB (1996) Introduction to remote sensing, 2nd edn. London, Taylor and Francis

    Google Scholar 

  • Census of India (1981) Population census of India. Ministry of Home Affairs, Government of India, Delhi, India

    Google Scholar 

  • Champion HG, Seth SK (1968) A revised survey of the forest types of India. Government of India, Delhi, India

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Davis FW, Goetz S (1990) Modeling vegetation pattern using digital terrain data. Landscape Ecol 4:69–80

    Article  Google Scholar 

  • De La Ville N, Cousins S, Bird C (1997) Habitat suitability analysis using logistic regression and gis to outline potential areas for conservation of the Grey Wolf (Canis lupus). In: proceeding of conference, GIS Research, University of Leeds, Leeds, UK. pp 9–11

    Google Scholar 

  • Dendoncker N, Bogaert P, Rounsevell M (2006) A statistical method to downscale aggregated land use data and scenarios. J Land use Sci 1(2–4):63–82

    Article  Google Scholar 

  • ERDAS IMAGINE 8.7 (2004) Leica geosystems GIS and mapping. http://gis.leicageosystems.com

  • Geist V (1998) Deer of the world: their evolution, behaviour, and ecology. Stackpole Books, pp 73–77

    Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121

    Article  Google Scholar 

  • Homer CG, Edwards TC, Ramsey RD, Price KP (1993) Use of remote sensing methods in modelling sage grouse winter habitat. J Wildl Manag 57:78–84

    Article  Google Scholar 

  • Imam E (2011) Use of geospatial technology in evaluating landscape cover type changes in Chandoli National Park, India. Comput Ecol Softw 1(2):95–111

    Google Scholar 

  • Imam E, Kushwaha SPS, Singh A (2009) Evaluation of suitable tiger habitat in Chandoli National Park, India, using multiple logistic regression. Ecol Model 220:3621–3629

    Article  Google Scholar 

  • IUCN (2012) Red list of threatened species. Version 2012.1. Available online: http://www.iucnredlist.org

  • Johnson LB (1990) Analyzing spatial and temporal phenomena using geographical information systems. Landscape Ecol 4:31–43

    Article  Google Scholar 

  • Johnson AR, Milne BT, Wiens JA, Crist TO (1992) Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecol 7:63–75

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Nat Acad Sci U.S.A. 101:4854–4858. doi:10.1073/pnas.0306210101

  • Karanth K, Nichols JD, Karanth KU, Hines JE, Christensen NL (2010) The shrinking ark: patterns of large mammal extinctions in India. Proc. R. Soc. B 277:1971–1979. doi:10.1098/rspb.2010.0171

  • Kushwaha SPS (2002) Geoinformatics for wildlife habitat characterization. Map India. www.GISdevelopment.net

  • Kushwaha SPS, Hazarika R (2004) Assessment of habitat loss in Kameng and Sonitpur elephant reserves. Curr Sci 87:1447–1453

    Google Scholar 

  • Kushwaha SPS, Khan A, Habib B, Quadri A, Singh A (2004) Evaluation of sambar and muntjac habitats using geostatistical modelling. Curr Sci 86(10):1390–1400

    Google Scholar 

  • Lecis R, Norris K (2003) Habitat correlates of distribution and local population decline of the endemic Sardinian new Euproctus platycephalus. Biol Conserv 115:303–317

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW (1994) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Lyon JG (1983) Landsat derived land cover classifications for locating potential kestrel nesting habitat. Photogram Eng Remote Sens 49:245–250

    Google Scholar 

  • Mc Garigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps, computer software program produced by the authors at the University of Massachusetts, Amherst. Available from http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Palma L, Beja P, Rodrigues M (1999) The use of sighting data to analyse Iberian lynx habitat and distribution. J Appl Ecol 36:812–824

    Article  Google Scholar 

  • Parihar JS, Panigrahy S, Parihar JS (1986) Remote sensing based habitat assessment of Kaziranga National Park. In: Kamat DS, Panwar HS (eds) Wildlife habitat evaluation using remote sensing techniques. Indian Institute of Remote Sensing/Wildlife Institute of India, India, pp 157–164

    Google Scholar 

  • Porwal MC, Roy PS, Chellamuthu V (1996) Wildlife habitat analysis for sambar (Cervus unicolor) in Kanha National Park using remote sensing. Int J Remote Sens 17:2683–2697

    Article  Google Scholar 

  • Prater SH (2005) Book of Indian animals. Oxford University Press, UK

    Google Scholar 

  • Ramesh T, Sankar K, Qureshi Q, Kalle R (2012) Group size, sex and age composition of chital (Axis axis) and sambar (Rusa unicolor) in a deciduous habitat of Western Ghats. Mamm Biol 77:53–59

    Google Scholar 

  • Roy PS, Ravan SA, Rajadnya N, Das KK, Jain A, Singh S (1995) Habitat suitability analysis of Nemorhaedus goral—a remote sensing and geographic information system approach. Curr Sci 69:685–691

    Google Scholar 

  • Schadt SE, Wegand T, Knauer F, Kaczensky P, Moser UB, Bufka L, Cerveny J, Koubek P, Huber T, Stanisa C, Trepl L (2002) Assessing the suitability of Central European landscapes for the reintroduction of Eurasian lynx. J Appl Ecol 39:189–203

    Article  Google Scholar 

  • Singh A (2004) Wildlife habitat analysis and vulnerability assessment of the Binsar wildlife sanctuary, Uttaranchal. Dissertation, Indian Institute of Remote Sensing, Dehradun, India

    Google Scholar 

  • Singh A, Kushwaha SPS (2010) Refining logistic regression models for wildlife habitat suitability modeling—a case study with muntjak and goral in the Central Himalayas, India. Ecol Model 222(8):1354–1366

    Article  Google Scholar 

  • SPSS-10 (1988) SPSS-X user’s guide. 3rd edn. SPSS Inc., Chicago, USA

    Google Scholar 

  • Store R, Jokimaki J (2003) A GIS-based multi-scale approach to habitat suitability modelling. Ecol Model 169:1–15

    Article  Google Scholar 

  • Thakur AK, Sing S, Roy PS (2008) Orthorectification of IRS-P6 LISS-IV data using Landsat ETM and SRTM datasets in the Himalayas of Chamoli district, Uttarakhand. Curr Sci 95:1459

    Google Scholar 

  • Timmins RJ, Steinmetz R, Baral HS, Kumar NS, Duckworth JW, Islam MdA, Giman B, Hedges S, Lynam AJ, Fellowes J, Chan BPL, Evans T (2008) Rusa unicolor. In: IUCN 2012, IUCN red list of threatened species, Version 2012.1. www.iucnredlist.org

  • Unial DP (2005) Habitat suitability analysis of Lion in proposed Palpur Kuno sanctuary using Remote Sensing and GIS. Dissertation, Indian Institute of Remote Sensing, Dehradun, India

    Google Scholar 

  • USFWS (1981) Standards for the development of habitat suitability models for use in the habitat evaluation procedures. USDIFWS, ESM 103, Washington, DC

    Google Scholar 

  • WPA (1991) Wildlife protection act of India. Natraj Publisher, Dehradun, India

    Google Scholar 

  • Zarri AA, Rahmani AR, Singh A, Kushwaha SPS (2008) Habitat suitability assessment for the endangered Nilgiri Laughingthrush: a multiple logistic regression approach. Curr Sci 94:1487–1494

    Google Scholar 

Download references

Acknowledgements

The author is thankful to Prof. SPS Kushwaha, former Head, Forestry and Ecology Division and the Dean, Indian Institute of Remote Sensing (IIRS), Dehradun, India for supervision and GIS-laboratory facilities. I am also thankful to Prof. H.S.A. Yahya, Dean Faculty of Life Science & former Chairman, Department of Wildlife Sciences, AMU, Aligarh (India) for encouraging and providing opportunity to work with IIRS, Dehradun. Thanks are also due to Aditya Singh, Dr. Mohammed Irfan (formerly from ATREE) and Director and forest staffs of Chandoli Tiger Reserve, Maharashtra, India for their technical and logistic supports during my field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekwal Imam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imam, E. (2017). Habitat Suitability Modelling for Sambar (Rusa unicolor): A Remote Sensing and GIS Approach. In: Hazra, S., Mukhopadhyay, A., Ghosh, A., Mitra, D., Dadhwal, V. (eds) Environment and Earth Observation. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-46010-9_15

Download citation

Publish with us

Policies and ethics