Skip to main content

Quantum Noncommutative Phi-Four

  • Chapter
  • First Online:
Lectures on Matrix Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 929))

  • 1862 Accesses

Abstract

In this chapter quantum noncommutative \(\Phi ^{4}\) theories on Moyal-Weyl spaces, the noncommutative fuzzy torus, and the fuzzy spheres S N 2 and S N 2 ×S N 2 are presented. This includes analytical results such as the UV-IR mixing, the stripe phase, the exact solution of the self-dual theory, as well as Monte Carlo results such as the phase structure on the fuzzy sphere, and the dispersion relation on the noncommutative fuzzy torus. Other results such as quantum noncommutative \(\Phi ^{4}\) theory on fuzzy S 2 ×S 2 and the Wilson renormalization group approach to noncommutative \(\Phi ^{4}\) in the Moyal-Weyl picture and in the matrix basis at the self-dual point are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not available on the ArXiv.

References

  1. Ambjorn, J., Catterall, S.: Stripes from (noncommutative) stars. Phys. Lett. B 549, 253 (2002) [hep-lat/0209106]

    Google Scholar 

  2. Bietenholz, W., Hofheinz, F., Nishimura, J.: Phase diagram and dispersion relation of the noncommutative lambda phi**4 model in d = 3. J. High Energy Phys. 0406, 042 (2004) [hep-th/0404020]

    Article  ADS  MathSciNet  Google Scholar 

  3. Brazovkii, S.A.: Phase transition of an isotropic system to a nonuniform state. Zh. Eksp. Teor. Fiz 68, (1975) 175–185

    Google Scholar 

  4. Chen, G.-H., Wu, Y.-S.: Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory. Nucl. Phys. B 622, 189 (2002) [hep-th/0110134]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chu, C.S., Madore, J., Steinacker, H.: Scaling limits of the fuzzy sphere at one loop. J. High Energy Phys. 0108, 038 (2001) [hep-th/0106205]

    Article  ADS  MathSciNet  Google Scholar 

  6. Das, C.R., Digal, S., Govindarajan, T.R.: Finite temperature phase transition of a single scalar field on a fuzzy sphere. Mod. Phys. Lett. A 23, 1781 (2008) [arXiv:0706.0695 [hep-th]]

    Google Scholar 

  7. Dolan, B.P., O’Connor, D., Presnajder, P.: Matrix phi**4 models on the fuzzy sphere and their continuum limits. J. High Energy Phys. 0203, 013 (2002) [hep-th/0109084]

    Article  ADS  MathSciNet  Google Scholar 

  8. Ferretti, G.: On the large N limit of 3-d and 4-d Hermitian matrix models. Nucl. Phys. B 450, 713 (1995) [hep-th/9504013]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ferretti, G.: The critical exponents of the matrix valued Gross-Neveu model. Nucl. Phys. B 487, 739 (1997) [hep-th/9607072]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Garcia Flores, F., O’Connor, D., Martin, X.: Simulating the scalar field on the fuzzy sphere. PoS LAT 2005, 262 (2006) [hep-lat/0601012]

    Google Scholar 

  11. Garcia Flores, F., Martin, X., O’Connor, D.: Simulation of a scalar field on a fuzzy sphere. Int. J. Mod. Phys. A 24, 3917 (2009) [arXiv:0903.1986 [hep-lat]]

    Google Scholar 

  12. Golner, G.R.: Calculation of the critical exponent eta via Renormalization-group recursion formulas. Phys. Rev. B 8, 339 (1973)

    Article  ADS  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic, San Diego (1980)

    MATH  Google Scholar 

  14. Grosse, H., Klimcik, C., Presnajder, P.: Towards finite quantum field theory in noncommutative geometry. Int. J. Theor. Phys. 35, 231 (1996) [hep-th/9505175]

    Article  MathSciNet  MATH  Google Scholar 

  15. Grosse, H., Klimcik, C., Presnajder, P.: Field theory on a supersymmetric lattice. Commun. Math. Phys. 185, 155 (1997) [hep-th/9507074]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gubser, S.S., Sondhi, S.L.: Phase structure of noncommutative scalar field theories. Nucl. Phys. B 605, 395 (2001) [hep-th/0006119]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kazakov, D.I.: Critical exponents in matrix models. In: 25th International Conference on High-energy Physics (ICHEP 90), pp. 732–736 (1990)

    Google Scholar 

  18. Kleinert, H., Nogueira, F.S.: Charged fixed point found in superconductor below T(c). Nucl. Phys. B 651, 361 (2003). doi:10.1016/S0550-3213(02)01075-1 [cond-mat/0104573]

    Google Scholar 

  19. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on noncommutative phase spaces. J. High Energy Phys. 0401, 017 (2004) [hep-th/0308043]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lizzi, F., Spisso, B.: Noncommutative field theory: numerical analysis with the fuzzy disc. Int. J. Mod. Phys. A 27, 1250137 (2012) [arXiv:1207.4998 [hep-th]]

    Google Scholar 

  21. Magnus, W., Oberhettinger, F.: Formulas and Theorems for the Special Functions of Mathematical Physics. Chelsea Publishing Company, New York (1949)

    MATH  Google Scholar 

  22. Martin, X.: A matrix phase for the phi**4 scalar field on the fuzzy sphere. J. High Energy Phys. 0404, 077 (2004) [hep-th/0402230]

    Article  ADS  MathSciNet  Google Scholar 

  23. Medina, J., Bietenholz, W., O’Connor, D.: Probing the fuzzy sphere regularisation in simulations of the 3d lambda phi**4 model. J. High Energy Phys. 0804, 041 (2008) [arXiv:0712.3366 [hep-th]]

    Google Scholar 

  24. Meja-Daz, H., Bietenholz, W., Panero, M.: The continuum phase diagram of the 2d non-commutative lambda phi**4 Model. J. High Energy Phys. 1410, 56 (2014). doi:10.1007/JHEP10(2014)056. arXiv:1403.3318 [hep-lat]

    Google Scholar 

  25. Micu, A., Sheikh Jabbari, M.M.: Noncommutative phi4 theory at two loops. J. High Energy Phys. 0101, 025 (2001). doi:10.1088/1126-6708/2001/01/025 [hep-th/0008057]

    Article  ADS  MathSciNet  Google Scholar 

  26. Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. J. High Energy Phys. 0002, 020 (2000) [hep-th/9912072]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Nair, V.P., Polychronakos, A.P., Tekel, J.: Fuzzy spaces and new random matrix ensembles. Phys. Rev. D 85, 045021 (2012) [arXiv:1109.3349 [hep-th]]

    Google Scholar 

  28. Nishigaki, S.: Wilsonian approximated renormalization group for matrix and vector models in 2 < d < 4. Phys. Lett. B 376, 73 (1996) [hep-th/9601043]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O’Connor, D., Saemann, C.: Fuzzy scalar field theory as a multitrace matrix model. J. High Energy Phys. 0708, 066 (2007) [arXiv:0706.2493 [hep-th]]

    Google Scholar 

  30. Panero, M.: Numerical simulations of a non-commutative theory: The Scalar model on the fuzzy sphere. J. High Energy Phys. 0705, 082 (2007) [hep-th/0608202]

    Article  ADS  MathSciNet  Google Scholar 

  31. Polychronakos, A.P.: Effective action and phase transitions of scalar field on the fuzzy sphere. Phys. Rev. D 88, 065010 (2013). doi:10.1103/PhysRevD.88.065010. arXiv:1306.6645 [hep-th]

    Google Scholar 

  32. Saemann, C.: The multitrace matrix model of scalar field theory on fuzzy CP**n. SIGMA 6, 050 (2010) [arXiv:1003.4683 [hep-th]]

    Google Scholar 

  33. Steinacker, H.: A non-perturbative approach to non-commutative scalar field theory. J. High Energy Phys. 0503, 075 (2005) [hep-th/0501174]

    Article  ADS  MathSciNet  Google Scholar 

  34. Tekel, J.: Random matrix approach to scalar fields on fuzzy spaces. Phys. Rev. D 87, no. 8, 085015 (2013) [arXiv:1301.2154 [hep-th]]

    Google Scholar 

  35. Tekel, J.: Uniform order phase and phase diagram of scalar field theory on fuzzy CP**n. J. High Energy Phys. 1410, 144 (2014). doi:10.1007/JHEP10(2014)144. arXiv:1407.4061 [hep-th]

    Google Scholar 

  36. Vaidya, S.: Perturbative dynamics on the fuzzy S**2 and RP**2. Phys. Lett. B 512, 403 (2001) [hep-th/0102212]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Vaidya, S., Ydri, B.: On the origin of the UV-IR mixing in noncommutative matrix geometry. Nucl. Phys. B 671, 401 (2003) [hep-th/0305201]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Vaidya, S., Ydri, B.: New scaling limit for fuzzy spheres (2002) [hep-th/0209131]

    Google Scholar 

  39. Varshalovich, D.A., Moskalev, A.N., Khersonsky, V.K.: Quantum Theory Of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols, 514p. World Scientific, Singapore (1988)

    Book  Google Scholar 

  40. Wilson, K.G., Kogut, J.B.: The Renormalization group and the epsilon expansion. Phys. Rept. 12, 75 (1974). The Wilson recursion formula was reconsidered more carefully in [12]

    Google Scholar 

  41. Ydri, B.: New algorithm and phase diagram of noncommutative ϕ 4 on the fuzzy sphere. J. High Energy Phys. 1403, 065 (2014) [arXiv:1401.1529 [hep-th]]

    Google Scholar 

  42. Ydri, B.: A multitrace approach to noncommutative \(\Phi _{2}^{4}\). Phys. Rev. D 93 (6), 065041 (2016). doi:10.1103/PhysRevD.93.065041. arXiv:1410.4881 [hep-th]

    Google Scholar 

  43. Ydri, B., Ahmim, R.: Matrix model fixed point of noncommutative 4 theory. Phys. Rev. D 88 (10), 106001 (2013) [arXiv:1304.7303 [hep-th]]

    Google Scholar 

  44. Ydri, B., Bouchareb, A.: The fate of the Wilson-Fisher fixed point in non-commutative ϕ 4. J. Math. Phys. 53, 102301 (2012) [arXiv:1206.5653 [hep-th]]

    Google Scholar 

  45. Ydri, B., Ahmim, R., Bouchareb, A.: Wilson RG of noncommutative \(\Phi _{4}^{4}\). Int. J. Mod. Phys. A 30, 1550195 (2015). doi:10.1142/S0217751X1550195X [arXiv:1509.03605 [hep-th]]

    Google Scholar 

  46. Ydri, B., Ramda, K., Rouag, A.: Phase diagrams of the multitrace quartic matrix models of noncommutative \(\Phi ^{4}\) theory. Phys. Rev. D 93 (6), 065056 (2016). doi:10.1103/PhysRevD.93.065056. arXiv:1509.03726 [hep-th]

    Google Scholar 

  47. Ydri, B., Rouag, A., Ramda, K.: Emergent geometry from random multitrace matrix models. Phys. Rev. D 93 (6), 065055 (2016). doi:10.1103/PhysRevD.93.065055. arXiv:1509.03572 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ydri, B. (2017). Quantum Noncommutative Phi-Four. In: Lectures on Matrix Field Theory. Lecture Notes in Physics, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-46003-1_4

Download citation

Publish with us

Policies and ethics