Skip to main content

The Noncommutative Moyal-Weyl Spaces R d θ

  • Chapter
  • First Online:
Lectures on Matrix Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 929))

  • 1871 Accesses

Abstract

This chapter contains a detailed discussion of the Heisenberg algebra and its representation theory. Then a systematic construction of the Moyal-Weyl noncommutative spaces, in a generic non-zero magnetic field, and their scalar field theories is put forward. A self-contained discussion of two other closely related non commutative space, the noncommutative torus and the fuzzy disc, is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that only bounded operators subjected to some growth restriction are in fact allowed in analogy with the allowed entire functions.

References

  1. Alexanian, G., Pinzul, A., Stern, A.: Generalized coherent state approach to star products and applications to the fuzzy sphere. Nucl. Phys. B 600, 531 (2001) [hep-th/0010187]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambjorn, J., Catterall, S.: Stripes from (noncommutative) stars. Phys. Lett. B 549, 253 (2002) [hep-lat/0209106]

    Google Scholar 

  3. Ambjorn, J., Makeenko, Y.M., Nishimura, J., Szabo, R.J.: Lattice gauge fields and discrete noncommutative Yang-Mills theory. J. High Energy Phys. 0005, 023 (2000) [hep-th/0004147]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Balachandran, A.P., Gupta, K.S., Kurkcuoglu, S.: Edge currents in noncommutative Chern-Simons theory from a new matrix model. J. High Energy Phys. 0309, 007 (2003) [hep-th/0306255]

    Article  ADS  MathSciNet  Google Scholar 

  5. Barbon, J.L.F.: Introduction to Noncommutative Field Theory. ICTP Lecture Note Series, 0210004 (2001)

    Google Scholar 

  6. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bietenholz, W., Hofheinz, F., Nishimura, J.: Phase diagram and dispersion relation of the noncommutative lambda phi**4 model in d = 3. J. High Energy Phys. 0406, 042 (2004) [hep-th/0404020]

    Article  ADS  MathSciNet  Google Scholar 

  8. Connes, A.: Noncommutative Geometry. Academic Press, London (1994)

    MATH  Google Scholar 

  9. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001) [hep-th/0106048]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gracia-Bondia, J.M., Varilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys. 29, 869 (1988)

    Google Scholar 

  11. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Grosse, H., Wulkenhaar, R.: Renormalization of phi**4 theory on noncommutative R**2 in the matrix base. J. High Energy Phys. 0312, 019 (2003) [hep-th/0307017]

    Article  ADS  MathSciNet  Google Scholar 

  13. Grosse, H., Wulkenhaar, R.: Power counting theorem for nonlocal matrix models and renormalization. Commun. Math. Phys. 254, 91 (2005) [hep-th/0305066]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Grosse, H., Wulkenhaar, R.: Renormalization of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005) [hep-th/0401128]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Klauder, J.R., Skagerstam, B.-S.: Coherent States: Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  16. Klauder, J., Sudarshan, G.: Fundamentals of Quantum Optics. Benjamin, New York (1968)

    Google Scholar 

  17. Langmann, E.: Interacting fermions on noncommutative spaces: exactly solvable quantum field theories in 2n+1 dimensions. Nucl. Phys. B 654, 404 (2003) [arXiv:hep-th/0205287]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168 (2002) [hep-th/0202039]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of noncommutative field theory in background magnetic fields. Phys. Lett. B 569, 95 (2003) [hep-th/0303082]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on noncommutative phase spaces. J. High Energy Phys. 0401, 017 (2004) [hep-th/0308043]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Lizzi, F.: Fuzzy two-dimensional spaces. In: Mankoc Borstnik, N., Nielsen, H.B., Froggatt, C.D., Lukman, D. (eds.) Proceedings to the Euroconference on Symmetries Beyond the Standard Model. Proceedings. Part 1 of 2. hep-ph/0401043 (2003)

    Google Scholar 

  22. Lizzi, F., Vitale, P., Zampini, A.: From the fuzzy disc to edge currents in Chern-Simons theory. Mod. Phys. Lett. A 18, 2381 (2003) [hep-th/0309128]

    Article  ADS  MathSciNet  Google Scholar 

  23. Lizzi, F., Vitale, P., Zampini, A.: The fuzzy disc. J. High Energy Phys. 0308, 057 (2003) [hep-th/0306247]

    Article  ADS  MathSciNet  Google Scholar 

  24. Lizzi, F., Vitale, P., Zampini, A.: The beat of a fuzzy drum: fuzzy Bessel functions for the disc. J. High Energy Phys. 0509, 080 (2005) [hep-th/0506008]

    Article  ADS  MathSciNet  Google Scholar 

  25. Lizzi, F., Vitale, P., Zampini, A.: The fuzzy disc: a review. J. Phys. Conf. Ser. 53, 830 (2006)

    Article  ADS  Google Scholar 

  26. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: f oscillators and nonlinear coherent states. Phys. Scr. 55, 528 (1997) [quant-ph/9612006]

    Google Scholar 

  27. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Pasquier, V.: Quantum hall effect and non-commutative geometry. Prog. Math. Phys. 53, 1 (2007). Also in Séminaire Poincaré X (2007) 1–14

    Google Scholar 

  29. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  30. Pinzul, A., Stern, A.: Edge states from defects on the noncommutative plane. Mod. Phys. Lett. A 18, 2509 (2003) [hep-th/0307234]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sharan, P.: ∗ product representation of path integrals. Phys. Rev. D 20, 414 (1979)

    Google Scholar 

  32. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207 (2003) [arXiv:hep-th/0109162]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Voros, A.: The WKB method in the Bargmann representation. Phys. Rev. A 40, 6814 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  34. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ydri, B. (2017). The Noncommutative Moyal-Weyl Spaces R d θ . In: Lectures on Matrix Field Theory. Lecture Notes in Physics, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-46003-1_2

Download citation

Publish with us

Policies and ethics