Skip to main content

Excited Intermediates in Silanes Combustion

  • Chapter
  • First Online:
Key Factors of Combustion

Part of the book series: Springer Aerospace Technology ((SAT))

  • 1156 Accesses

Abstract

It is shown that the flame emission in the region 400–600 nm in monosilane and dichlorosilane oxidation (initial pressures of 3–20 Torr; T0 = 300 K) is caused by radical luminescence processes on the surface of aerosol ultra-disperse particles of SiO2. The generation of energy by the interaction of gas-phase species with the SiO2 surface at initial stages of the phase formation depends on the presence of both the intrinsic structural defects =Si: and defects of Si+ implanted into SiO2. The addition of SF6 to the initial mixture results in the appearance of the emission bands due to the Si+ defects in the radical luminescence spectrum. Electronically excited HO2 radicals (A 1 A′–X 2 A′′), OH radicals (ν = 2-0), and HCl molecules (ν = 3-0) are identified using the emission spectra at 0.8–1.6 μm in the rarefied flame in dichlorosilane combustion at 293 K and low pressures. The spectrum also contains the composite bands of the H2O (0.823 μm) and H2O2 (0.854 μm) molecule vibrations. The maximum intensity of emission of these species is reached behind the front of the chemical transformation, and the equilibrium between the vibrational and translational degrees of freedom is established in the region of the regular thermal regime of cooling. SF6 additives act as a reservoir that accumulates the vibrational energy in the developed ignition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Cze, VLSI Technology, N.Y.Ac. Press, Murray Hill, 2008, 321 P., Chapple-Sokol, J.D. and Gordon, R.F., Substrate-dependent growth of atmospheric pressure chemically vapor deposited silicon dioxide from dichlorosilane and oxygen, Thin Solid Films, 1989, V. 171, P. 291.

    Google Scholar 

  2. Khairutdinov, R.F., Chemistry of semiconductor nanoparticles, Uspechi Khimii., 1998, V. 67, no. 2, P. 125 (in Russian).

    Google Scholar 

  3. Shantarovich, P.S., On the Chain Nature of Silane Oxidation, Acta Physicochem. URSS, 1935, V. 2, P. 633.

    Google Scholar 

  4. Emeleus, H.J. and Stewart, K., J. Chem. Phys., Reactions of chlorinated silanes, 1935, V. 2, no. 1, P. 1182.

    Google Scholar 

  5. V. V. Azatyan, V. A. Kalkanov, A. A. Shavard. Mechanism of silane oxidation, Reaction Kinetics and Catalysis Letters, 1980, V.15, Issue 3, P.367.

    Google Scholar 

  6. Van de Weijer, P. and Zwerver, B.H., Suijker J.L.G., Chem. Phys. Lett., 1988, V. 153, no. 1, P. 33.

    Google Scholar 

  7. Brown, V R., Krasnoperov, L. N., and Panfilov, V N., Identification of SiH3 Radicals in the Flame of Silane with Oxygen, Doklady Academii Nauk USSR, 1981, V. 260, No. 3, P. 901 (in Russian).

    Google Scholar 

  8. Azatyan, V. V, Ayvazyan, R. G., and Kalkanov, V. A., et al., Kinetic Features of Silane Oxidation, Russian Journal of Physical Chemistry B, V. 2, No. 8, 1983, P. 1056.

    Google Scholar 

  9. Arutyunyan, S.A. and Sarkisyan, E.N., O atoms in silane flame, 1982, Armenian Chem. J., V. 35, no. 1, P. 3 (in Russian).

    Google Scholar 

  10. Nikolai M. Rubtsov, Vylen V. Azatyan, Georgii I. Tsvetkov, Savelii M. Temchin, Detection of SiH2 from the A1B1–X1A1 transition in the emission spectrum of the rarified flame in the oxidation of silane, Mendeleev Communications, V. 7, Issue 5, 1997, P. 187.

    Google Scholar 

  11. Koda, S. and Fujiwara, O., A study of inhibition effects for silane combustion by additive gases. Combust. Flame, 1988, V. 73, P. 187.

    Google Scholar 

  12. Suga, S. and Koda, S., Emission from Pulsating Combustion of Silane at a Reduced Pressure, 1988, Jpn. J. Appl. Phys., V. 27, P. 1966.

    Google Scholar 

  13. Azatyan, V.V., Vartanyan, A.A., Kalkanov, V.A., and Temchin, S.M., Detection of electronically excited OH radical in a rarified flame of dichlorosilane and oxygen, Russian. J. Kinetics and Catalysis, 1991, V. 32, no. 2, P. 511 (in Russian).

    Google Scholar 

  14. N.M. Rubtsov, V.I. Chernysh and G.I. Tsvetkov, Intermediate Products of the Chain Oxidation of Dichlorosilane, Russian J. Kinet, Catalysis, 1997, V.38, P.391.

    Google Scholar 

  15. Vartanyan, A.A., Investigation into kinetic features of dichlorosilane oxigation with oxygen, Ph.D. These, Russia, Chernogolovka: Inst. of Chemical Physics RAS, 1991.

    Google Scholar 

  16. Glinski, R.J., Gole, J.H., and Dixon, D.A., Oxidation processes in the gas-phase silane-ozone system. Chemiluminescent emission and the molecular structure of H2SiO, J. Am. Chem. Soc., 1985, V. 107, P. 5891.

    Google Scholar 

  17. Inoue, G. and Suzuki, M., Reactions of SiH2 (X1A1) with H2, CH4, C2H4, SiH4 and Si2H6 at 298 K, Chem. Phys. Lett., 1985, V. 122, no. 4, P. 361.

    Google Scholar 

  18. Hager, G., Wilson, L.E., and Hadley, S.F., Reactions of (Si, Ge(3P) + N2O → SiO*, GeO*, Chem. Phys. Lett., 1974, V. 27, P. 439.

    Google Scholar 

  19. Brus, L.E. and Comac, J., Interaction of O2 with Si (111) surface, J. Chem. Phys., 1981, V. 54, P. 2771.

    Google Scholar 

  20. Chung, S.L., Tsai, M.S., and Lin, H.D., Formation of particles in a H2-O2 counterflow diffusion flame doped with SiH4 or SiCl4, Combust. Flame, 1991, V. 85, P. 134.

    Google Scholar 

  21. Tokuhashi, K., Horuguchi, S., Urano, Y., Iwasaka, M., Ohtahi, H., and Kondo, S., Premixed Silane-Oxygen-Nitrogen Flames, Combust. Flame, 1990, V. 89, P. 40.

    Google Scholar 

  22. Hartman, J.R., Famil-Ghirina, J., Ring, M.A., and O’Neal, H.E., Stoichiometry and possible mechanism of SiH4- O2 explosions, Combust. Flame, 1987, V. 68, P. 43.

    Google Scholar 

  23. Breiland, W. G., Ho, P., and Coltrin, M. E., Laser Diagnostics of Silicon CVD: In Situ Measurements and Comparisons with Model Predictions, 1987, Proc. 10th. Int. Conf. on CVD, (G. W.Cullen, ed.), P. 912, Electrochem. Soc., Pennington, NJ.

    Google Scholar 

  24. Deutsch, T.F., The chemistry of the infrared laser photodecomposition of SiH4, J. Chem. Phys., 1979, V. 70, P. 1187.

    Google Scholar 

  25. Bedja I. and Kamat P.V., Capped semiconductor colloids. Synthesis and photoelectrochemical behaviour of TiO2-capped SnO2 nanocrystallites, 1995, J. Phys. Chem., V. 99, P.9182.

    Google Scholar 

  26. Baraban, A.P., Bulavinov, V.V., and Konorov, P.P., Electronics of SiO2 Layers on Silicon, Leningrad: Leningrad State Univer., 1988 (in Russian).

    Google Scholar 

  27. Streletskii, A.N., Panovich, A.B., Gachkovskii, V.F., Aristov, Yu.I., Rufov, Yu.N., and Butyagin, P.Yu., Luminescence of mechanical defects on quarts substrates, Russian Journal of Physical Chemistry B, 1982, V. 1, no. 7, P. 938.

    Google Scholar 

  28. El-Shall, M.S., Turkki, T., Graiver, D., Pernisz, U.C., and Baraton, M.I., Synthesis and photoluminescence of weblike agglomeration of silicia nanoparticles, J. Phys. Chem., 1995, V. 99, no. 5, P. 1785.

    Google Scholar 

  29. N. M. Rubtsov, G. I. Tsvetkov, and V. I. Chernysh, Emission Spectra of Intermediate Species Formed in Rarefied Flames of Chain Oxidation Reactions of Monosilane and Dichlorosilane, Reaction Kinetics and Catalysis Letters, 1998, V.39, no 3, P. 306.

    Google Scholar 

  30. Kharlamov, V.F., Recombination of Atoms on Solid Surfaces and Accompanying Effects, Tomsk: Tomsk State Univ., 1994 (in Russian).

    Google Scholar 

  31. Tolstikov, G.A., Sharipov, G.L., Voloshin, A.I., and Kazakov, V.P., Chemiluminescent decomposition of peroxides, catalyzed by crystalline substances, as a cause of crystalloluminescence, Doklady. Akad. Nauk USSR, 1984, V.274, no. 3, P. 658 (in Russian).

    Google Scholar 

  32. Dubois, I., The Absorption Spectrum of the Free SiH2 Radical, Can. J. Phys., 1968, V.46, P. 2485.

    Google Scholar 

  33. Zhao, X., Schoenfeld, O., Komuro, S., Aoyagi, Y., and Sugano, T., Quantum confinement in nanometer-sized silicon crystallites, Phys. Rev. B: Condens. Matter, 1994, V. 50, no. 24, P. 18654.

    Google Scholar 

  34. Conner, C.P., Stewart, G.W., Lindsay, D.M., and Gole, S.H., Reactions of Silanes with Halogens: Chemluminescent Products in the Ultraviolet-Visible Spectrum. J. Am. Chem. Soc., 1977, V. 13, P. 2544.

    Google Scholar 

  35. Baraban, A.P., Konorov, P.P., Malyavka, L.V., and Troshikhin, A.G., Electroluminescence of ion-implanted Si-SiO2 structures, The Russian Journal of Applied Physics, 2000, V. 45, no. 8, P. 1042.

    Google Scholar 

  36. Ratnov, A.G., Rubtsov, N.M., Temchin, S.M., and Dement’ev, A.P., Deposition and Some Properties of silicon dioxide thin films obtained by monosilane and dichlorosilane oxidation at low temperatures and pressures, Russian Microelectronics, 1996, V. 25, no. 1, P. 29.

    Google Scholar 

  37. T. V. Voloshina, T. N. Zavaritskaya, I. V. Kavetskaya, V. A. Karavanskii, D. A. Romashov, Formation and Photoluminescence Properties of Porous Silicon Produced in Iodine‐Containing Electrolytes, Journal of Applied Spectroscopy, 2002, V.69, Issue 2, P. 275.

    Google Scholar 

  38. Tsybeskov, L., Vandushev, Yu.V., and Fauchet, P.M., Blue emission in porous silicon: Oxygen-related photoluminescence, Phys. Rev. B: Condens. Matter, 1994, V. 49, P. 7821.

    Google Scholar 

  39. Azatyan, V.V., Aivazyan, R.G., Dzhabiev, I.T., and Dzhabiev, T.S., Paramagnetic Centers in Solid Products of Monosilane Combustion, Russian J. Kinet. Catal., 1997, V. 38, no. 1, P. 48.

    Google Scholar 

  40. Anderson, Philip W., Absence of diffusion in certain random lattices, Physical Review (American Physical Society) 1958, V. 109, no.5, P.1492.

    Google Scholar 

  41. Chang H.W., Setser D.W. Infrared chemiluminescence and energy partitioning from reactions of fluorine atoms with hydrides of carbon, silicon, oxygen, sulfur, nitrogen, and phosphorus. J.Chem.Phys., 1973, V. 58, P.2310.

    Google Scholar 

  42. N. M. Rubtsov, G. I. Tsvetkov and V. I. Chernysh, Intermediate products of the chain oxidation of dichlorosilane, Russian J. Kinet. Catal., 1995, V.36, P.457.

    Google Scholar 

  43. V. P. Karpov, N. M. Rubtsov, O. T. Ryzhkov, S. M. Temchin and V.I. Chernysh, Investigation of chain ignition in the reaction of dichlorosilane oxidation by means of high speed schlieren cinematography, Chem. Phys. Reports, 1998, V. 17, P. 72.

    Google Scholar 

  44. M. Kustanovich, Spectral Analysis, High School, Moscow, 1967, 392 P. (in Russian).

    Google Scholar 

  45. C. N. Bauwell, Fundamentals of Molecular Spectroscopy, McGraw- Hill, London. 1983, 382 P.

    Google Scholar 

  46. К. H. Becker, E. H. Fink, A. Leiss, A. Schurath, Study of the Near Infrared Emission Bands of the Hydroperoxyl Radical at Medium Resolution, J. Chem. Phys. Lett. 1978, V. 54, N 1, P. 191.

    Google Scholar 

  47. P.E. Charters and J.C. Polanyi, An Improved Technique for the Observation of Infrared Chemiluminescence; Resolved Infrared Emission of OH Arising from the System H + O2, 1960, Can.J. Chem., V.38, P.1742.

    Google Scholar 

  48. M. Abid, J. S. Wu, J. B. Liu, P. D. Ronney, U. Ueki, K. Maruta, Experimental and numerical study of flame ball IR and UV emissions, H. Kohayashi and T. Niioka, Combust. Flame. 1999, V.116, P. 348.

    Google Scholar 

  49. A. A. Radtzig and B. M. Smirnov, Handbook on Atomic and Molecular Physics, 1980, Moscow, Atomizdat, 240 P. (in Russian).

    Google Scholar 

  50. L. F. Britton, Combustion Hazard of Silane and Its Chlorides, Plant/Operations Progress. 1990, V.9, P. 16.

    Google Scholar 

  51. J. M. Herbelin and T. Emanuel, Einstein coefficients for diatomic molecules, J. Chem. Phys., 1974, V. 60, P.689.

    Google Scholar 

  52. D. E. Burch. D. A. Tryvnak, R. R. Pitty and C. E. Bartley Absorption of Infrared Radiant Energy by CO2 and H2O. IV. Shapes of Collision-Broadened CO2 Lines, JOSA, 1969, V. 59, P. 267.

    Google Scholar 

  53. Handbook on Physical Values, eds. I. S. Grigoryev and E. Z. Meilichov, Energoatomizdal, Moscow, 1991, 1232 P. (in Russian).

    Google Scholar 

  54. David A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, 2nd enl. and rev. ed., translation editor, John P. Appleton. New York: Plenum Press, 1969.

    Google Scholar 

  55. Chemical Kinetics and Chain Reactions, ed. V. N. Kondratiev, Nauka, Moscow, 1966, 312 P. (in Russian).

    Google Scholar 

  56. C. P. Fenimore and T. W. Jones, Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms, Combust. Flame, 1964, V.13, P.231.

    Google Scholar 

  57. Miller, D.R., Evers, R.L., and Skinner, G.B., Effects of Various Inhibitors on Hydrogen-Air Flame Speeds, Combust. Flame. 1963. V. 7. P. 137.

    Google Scholar 

  58. Handbook of Chemical Lasers, eds. R.W. F. Fross and J. F. Botu J., Wiley & Sons, New York, 1976, 659 P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai M. Rubtsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubtsov, N.M. (2017). Excited Intermediates in Silanes Combustion. In: Key Factors of Combustion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-45997-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45997-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45996-7

  • Online ISBN: 978-3-319-45997-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics