Occam’s Razor Applied to the Petri Net Coverability Problem

  • Thomas GeffroyEmail author
  • Jérôme Leroux
  • Grégoire Sutre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9899)


The verification of safety properties for concurrent systems often reduces to the coverability problem for Petri nets. This problem was shown to be ExpSpace-complete forty years ago. Driven by the concurrency revolution, it has regained a lot of interest over the last decade. In this paper, we propose a generic and simple approach to solve this problem. Our method is inspired from the recent approach of Blondin, Finkel, Haase and Haddad [3]. Basically, we combine forward invariant generation techniques for Petri nets with backward reachability for well-structured transition systems. An experimental evaluation demonstrates the efficiency of our approach.


Concurrent System Membership Problem Finite Basis Coverability Algorithm Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput. 160(1–2), 109–127 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blondin, M., Finkel, A., Haase, C., Haddad, S.: QCover with benchmarks.
  3. 3.
    Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability problem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 480–496. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_28 CrossRefGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM (1977)Google Scholar
  5. 5.
    Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of Erlang-style concurrency. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 454–476. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Inf. Comput. 256(1–2), 63–92 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Inf. Comput. 137(1), 1–28 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ganty, P.: Mist - a safety checker for petri nets and extensions.
  11. 11.
    Geffroy, T., Leroux, J., Sutre, G.: ICover patch.
  12. 12.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Inf. Comput. 39(3), 675–735 (1992)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program verification. ACM Trans. Program. Lang. Syst. 36(4), 14:1–14:29 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lipton, R.J.: The reachability problem requires exponential space. Technical report 62, Yale University (1976)Google Scholar
  16. 16.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6(2), 223–231 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Recalde, L., Teruel, E., Silva, M.: Autonomous continuous P/T systems. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, pp. 107–126. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Geffroy
    • 1
    Email author
  • Jérôme Leroux
    • 2
  • Grégoire Sutre
    • 2
  1. 1.University of Bordeaux, LaBRI, UMR 5800TalenceFrance
  2. 2.University of Bordeaux and CNRS, LaBRI, UMR 5800TalenceFrance

Personalised recommendations