Skip to main content

What Numbers Could Be; What Objects Could Be

  • Chapter
  • First Online:
Truth, Objects, Infinity

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 28))

  • 412 Accesses

Abstract

Paul Benacerraf’s “What Numbers Could Not Be” (Benacerraf 1965) has dominated thinking in the philosophy of mathematics for almost 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benacerraf, P. (1965) What Numbers Could Not Be, The Philosophical Review, 74, 47–73.

    Google Scholar 

  • Burgess, J. P., & Rosen, G. (1997). A subject with no object: Strategies for nominalistic interpretation of mathematics. Oxford: Oxford UP.

    Google Scholar 

  • Dummett, M. A. E. (1991). Frege: Philosophy of mathematics. Cambridge, MA: Harvard UP.

    Google Scholar 

  • Frege, G. [1884] (1960). Die Grundlagen der Arithmetik, Eine logisch mathematische Untersuchung über den Begriff der Zahl. Breslau: Verlag von Wilhelm Koebner [The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number (2nd Ed., J. L. Austin, Trans.). New York: Harper].

    Google Scholar 

  • Geach, P. (1967). Identity. The review of metaphysics, 21(1), 3–12.

    Google Scholar 

  • Hale, B., & Wright, C. (2001). The reason’s proper study. Oxford: Oxford UP.

    Book  Google Scholar 

  • Hellman, G. (1989). Mathematics without numbers. Oxford: Oxford UP.

    Google Scholar 

  • Kreisel, G. (1967). Informal rigour and completeness proofs. In I. Lakatos (Ed.), Problems in the philosophy of mathematics (pp. 138–186). Amsterdam: North Holland Publishing Company.

    Chapter  Google Scholar 

  • Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford UP.

    Google Scholar 

  • Moschovakis, Y. (1994). Notes on set theory. New York: Springer.

    Book  Google Scholar 

  • Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84(3), 303–346.

    Article  Google Scholar 

  • Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford: Oxford UP.

    Google Scholar 

  • Shapiro, S. (2006). Computability, proof and open-texture. In R. Janusz, A. Olszewski, & J. Wokeński (Eds.), Church’s thesis after 70 years (pp. 420–455). Frankfurt: Ontos Verlag.

    Google Scholar 

  • Takeuti, G. (1954). Construction of the set theory from the theory of ordinal numbers. Journal of the Mathematical Society of Japan, 6, 196–220.

    Article  Google Scholar 

  • Tappenden, J. (2005). Proof style and understanding in mathematics I: visualization, unification and axiom choice. In P. Mancosu, K. F. Jørgensen, & S. A. Pederson (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 147–207). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Waismann, F. (1949). Analytic-synthetic I. Analysis, 10(2), 25–40.

    Google Scholar 

  • Waismann, F. (1950). Analytic-synthetic II. Analysis, 11(2), 25–38.

    Article  Google Scholar 

  • Waismann, F. (1951a). Analytic-synthetic III. Analysis, 11(3), 49–61.

    Article  Google Scholar 

  • Waismann, F. (1951b). Analytic-synthetic IV. Analysis, 11(6), 115–124.

    Article  Google Scholar 

  • Waismann, F. (1952). Analytic-synthetic V. Analysis, 13(1), 1–14.

    Google Scholar 

  • Waismann, F. (1953). Analytic-synthetic VI. Analysis, 13(4), 73–89.

    Google Scholar 

  • Waismann, F. [1945] (1968). Verifiability. In A. Flew (Ed.) Logic and language (pp. 117–144), Oxford: Basil Blackwell.

    Google Scholar 

  • Weyl, H. (1955). The Concept of a Riemann Surface (G. Maclane, English translation of the 3rd revised German edition of 1913). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Wilson, M. (1981). The double standard in ontology. Philosophical Studies, 39(4), 409–427.

    Article  Google Scholar 

  • Wilson, M. (1992). Frege: The royal road from geometry. Noûs, 26(2), 149–180.

    Article  Google Scholar 

  • Wilson, M. (2006). Wandering significance. Oxford: Oxford UP.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shapiro, S. (2016). What Numbers Could Be; What Objects Could Be. In: Pataut, F. (eds) Truth, Objects, Infinity. Logic, Epistemology, and the Unity of Science, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-45980-6_9

Download citation

Publish with us

Policies and ethics