# Quadratic Residues and Non-Residues in Arithmetic Progression

• Steve Wright
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2171)

## Abstract

The distribution problem for residues and non-residues has been intensively studied for 175 years using a rich variety of formulations and techniques. The work done in Chap.  gave a window through which we viewed one of these formulations and also saw a very important technique used to study it. Another problem that has been studied almost as long and just as intensely is concerned with the arithmetic structure of residues and non-residues. In this chapter, we will sample one aspect of that very important problem by studying when residues and non-residues form very long sequences in arithmetic progression. The first major advance in that problem came in 1939 when Harold Davenport proved the existence of residues and non-residues which form arbitrarily long sets of consecutive integers. As an introduction to the circle of ideas on which the work of this chapter is based, we briefly discuss Davenport’s results and the technique that he used to obtain them in Sect. 9.1. Davenport’s approach uses another application of the Dirichlet-Hilbert trick, which we used in the proofs of Theorems  and  presented in Chap. , together with an ingenious estimate of the absolute value of certain Legendre-symbol sums with polynomial values in their arguments. Davenport’s technique is quite flexible, and so we will adapt it in order to detect long sets of residues and non-residues in arithmetic progression. In Sect. 9.2, we will formulate our results precisely as a series of four problems which will eventually be solved in Sects. 9.4 and 9.10. This will require the estimation of the sums of values of Legendre symbols with polynomial arguments a la Davenport, which estimates we will derive in Sect. 9.3 by making use of a very important result of Andr Weil concerning the number of rational points on a nonsingular algebraic curve over p ℤ. In addition to these estimates, we will also need to calculate a term which will be shown to determine the asymptotic behavior of the number of sets of residues or non-residues which form long sequences of arithmetic progressions, and this calculation will be performed in Sects. 9.69.9. Here we will see how techniques from combinatorial number theory are applied to study residues and non-residues. In Sect. 9.11, an interesting class of examples will be presented, and we will use it to illustrate exactly how the results obtained in Sect. 9.10, together with some results of Sect. 9.11, combine to describe asymptotically how many sets there are of residues or non-residues which form long arithmetic progressions. Finally, the last section of this chapter discusses a result which, in certain interesting situations, calculates the asymptotic density of the set of primes which have residues and non-residues which form long sets of specified arithmetic progressions.

## Keywords

Rational Point Nonempty Subset Asymptotic Approximation Algebraic Curve Arithmetic Progression
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

1. 1.
B. Berndt, Classical theorems on quadratic residues. Enseignement Math. 22, 261–304 (1976)
2. 2.
H. Cohen, Number Theory, vol. I (Springer, New York, 2000)
3. 3.
J.B. Conway, Functions of One Complex Variable, vol. 1 (Springer, New York, 1978)
4. 4.
K.L. Chung, A Course in Probability Theory (Academic Press, New York, 1974)
5. 5.
H. Davenport, On character sums in finite fields. Acta Math. 71, 99–121 (1939)
6. 6.
H. Davenport, Multiplicative Number Theory (Springer, New York, 2000)
7. 7.
H. Davenport, P. Erdös, The distribution of quadratic and higher residues. Publ. Math. Debrecen 2, 252–265 (1952)
8. 8.
R. Dedekind, Sur la Th $$\acute{\text{e}}$$ orie des Nombres Entiers Alg $$\acute{\text{e}}$$ briques (1877); English translation by J. Stillwell (Cambridge University Press, Cambridge, 1996)Google Scholar
9. 9.
P.G.L. Dirichlet, Sur la convergence des series trigonom$$\acute{\text{e}}$$ trique qui servent $$\grave{\text{a}}$$ repr$$\acute{\text{e}}$$ senter une fonction arbitraire entre des limites donn$$\acute{\text{e}}$$ e. J. Reine Angew. Math. 4, 157–169 (1829)Google Scholar
10. 10.
P.G.L. Dirichlet, Beweis eines Satzes da$$\ss$$ jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen enh$$\ddot{\text{a}}$$ lt. Abh. K. Preuss. Akad. Wiss. 45–81 (1837)Google Scholar
11. 11.
P.G.L. Dirichlet, Recherches sur diverses applications de l’analyse infinit$$\acute{\text{e}}$$ simal $$\grave{\text{a}}$$ la th$$\acute{\text{e}}$$ orie des nombres. J. Reine Angew. Math. 19, 324–369 (1839); 21 (1–12), 134–155 (1840)Google Scholar
12. 12.
P.G.L. Dirichlet, Vorlesungen über Zahlentheorie (1863); English translation by J. Stillwell (American Mathematical Society, Providence, 1991)Google Scholar
13. 13.
J. Dugundji, Topology (Allyn and Bacon, Boston, 1966)
14. 14.
P. Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35, 374–384 (1949)
15. 15.
L. Euler, Theoremata circa divisores numerorum in hac forma pa 2 ± qb 2 contentorum. Comm. Acad. Sci. Petersburg 14, 151–181 (1744/1746)Google Scholar
16. 16.
L. Euler, Theoremata circa residua ex divisione postestatum relicta. Novi Commet. Acad. Sci. Petropolitanea 7, 49–82 (1761)Google Scholar
17. 17.
L. Euler, Observationes circa divisionem quadratorum per numeros primes. Opera Omnia I-3, 477–512 (1783)Google Scholar
18. 18.
M. Filaseta, D. Richman, Sets which contain a quadratic residue modulo p for almost all p. Math. J. Okayama Univ. 39, 1–8 (1989)Google Scholar
19. 19.
C.F. Gauss, Disquisitiones Arithmeticae (1801); English translation by A. A. Clarke (Springer, New York, 1986)Google Scholar
20. 20.
C.F. Gauss, Theorematis arithmetici demonstratio nova. Göttingen Comment. Soc. Regiae Sci. XVI, 8 pp. (1808)Google Scholar
21. 21.
C.F. Gauss, Summatio serierum quarundam singularium. Göttingen Comment. Soc. Regiae Sci. 36 pp. (1811)Google Scholar
22. 22.
C.F. Gauss, Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae, 1818, Werke, vol. II (Georg Olms Verlag, Hildescheim, 1973), pp. 47–64Google Scholar
23. 23.
C.F. Gauss, Theorematis fundamentallis in doctrina residuis demonstrationes et amplicationes novae. Göttingen Comment. Soc. Regiae Sci. 4, 17 pp. (1818)Google Scholar
24. 24.
C.F. Gauss, Theoria residuorum biquadraticorum: comentatio prima. Göttingen Comment. Soc. Regiae Sci. 6, 28 pp. (1828)Google Scholar
25. 25.
C.F. Gauss, Theoria residuorum biquadraticorum: comentatio secunda. Göttingen Comment. Soc. Regiae Sci. 7, 56 pp. (1832)Google Scholar
26. 26.
D. Gröger, Gauß’ Reziprozitätgesetze der Zahlentheorie: Eine Gesamtdarstellung der Hinterlassenschaft in Zeitgemäßer Form (Erwin-Rauner Verlag, Augsburg, 2013)Google Scholar
27. 27.
E. Hecke, Vorlesungen über die Theorie der Algebraischen Zahlen (1923); English translation by G. Brauer and J. Goldman (Springer, New York, 1981)
28. 28.
D. Hilbert, Die Theorie der Algebraischen Zahlkörper (1897); English translation by I. Adamson (Springer, Berlin, 1998)Google Scholar
29. 29.
T. Hungerford, Algebra (Springer, New York, 1974)
30. 30.
K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory (Springer, New York, 1990)
31. 31.
P. Kurlberg, The distribution of spacings between quadratic residues II. Isr. J. Math. 120, 205–224 (2000)
32. 32.
P. Kurlberg, Z. Rudnick, The distribution of spacings between quadratic residues. Duke Math. J. 100, 211–242 (1999)
33. 33.
J.L. Lagrange, Probl$$\grave{\text{e}}$$ mes ind$$\acute{\text{e}}$$ termin$$\acute{\text{e}}$$ s du second degr$$\acute{\text{e}}$$. Mém. Acad. R. Berlin 23, 377–535 (1769)Google Scholar
34. 34.
J.L. Lagrange, Reserches d’Arithm$$\acute{\text{e}}$$ tique, 2nde partie. Nouv. Mém. Acad. Berlin 349–352 (1775)Google Scholar
35. 35.
E. Landau, Elementary Number Theory. English translation by J. Goodman (Chelsea, New York, 1958)
36. 36.
A. Legendre, Reserches d’analyse indéterminée. Histoiré de l’Académie Royale des Sciences de Paris (1785), pp. 465–559, Paris 1788Google Scholar
37. 37.
A. Legendre, Essai sur la Th $$\acute{\text{e}}$$ orie des Nombres (Paris, 1798)Google Scholar
38. 38.
F. Lemmermeyer, Reciprocity Laws (Springer, New York/Berlin/Heidelberg, 2000)
39. 39.
40. 40.
D. Marcus, Number Fields (Springer, New York, 1977)
41. 41.
H. Montgomery, R. Vaughan, Multiplicative Number Theory I: Classical Theory (Cambridge University Press, Cambridge, 2007)
42. 42.
43. 43.
O. Ore, Les Corps Alg $$\acute{\text{e}}$$ briques et la Th $$\acute{\text{e}}$$ orie des Id $$\acute{\text{e}}$$ aux (Gauthier-Villars, Paris, 1934)Google Scholar
44. 44.
G. Perel’muter, On certain character sums. Usp. Mat. Nauk. 18, 145–149 (1963)
45. 45.
C. de la Vall$$\acute{\text{e}}$$ e Poussin, Recherches analytiques sur la th$$\acute{\text{e}}$$ orie des nombres premiers. Ann. Soc. Sci. Bruxelles 20, 281–362 (1896)Google Scholar
46. 46.
H. Rademacher, Lectures on Elementary Number Theory (Krieger, New York, 1977)
47. 47.
G.F.B. Riemann, $$\ddot{\text{U}}$$ ber die Anzahl der Primzahlen unter einer gegebenen Gr$$\ddot{\text{o}}\ss$$ e. Monatsberischte der Berlin Akademie (1859), pp. 671–680Google Scholar
48. 48.
K. Rosen, Elementary Number Theory and Its Applications (Pearson, Boston, 2005)Google Scholar
49. 49.
J. Rosenberg, Algebraic K-Theory and Its Application (Springer, New York, 1996)Google Scholar
50. 50.
W. Schmidt, Equations over Finite Fields: an Elementary Approach (Springer, Berlin, 1976)
51. 51.
A. Selberg, An elementary proof of Dirichlet’s theorem on primes in arithmetic progressions, Ann. Math. 50, 297–304 (1949)
52. 52.
A. Selberg, An elementary proof of the prime number theorem. Ann. Math. 50, 305–313 (1949)
53. 53.
A. Shamir, Identity-based cryptosystems and signature schemes, in Advances in Cryptology, ed. by G.R. Blakely, D. Chaum (Springer, Berlin, 1985), pp. 47–53
54. 54.
J. Shohat, J.D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943)
55. 55.
R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)
56. 56.
J. Urbanowicz, K.S. Williams, Congruences for L-Functions (Kluwer, Dordrecht, 2000)
57. 57.
A. Weil, Sur les Courbes Algébriques et les Variétes qui s’en Déduisent (Hermann et Cie, Paris, 1948)
58. 58.
A. Weil, Basic Number Theory (Springer, New York, 1973)
59. 59.
L. Weisner, Introduction to the Theory of Equations (MacMillan, New York, 1938)
60. 60.
A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)
61. 61.
S. Wright, Quadratic non-residues and the combinatorics of sign multiplication. Ars Combin. 112, 257–278 (2013)
62. 62.
S. Wright, Quadratic residues and non-residues in arithmetic progression. J. Number Theory 133, 2398–2430 (2013)
63. 63.
S. Wright, On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression, J. Combin. Number Theory 6, 85–111 (2015)
64. 64.
B.F. Wyman, What is a reciprocity law? Am. Math. Monthly 79, 571–586 (1972)
65. 65.
A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 1968)