Skip to main content

Gauss’ Theorema Aureum: The Law of Quadratic Reciprocity

  • Chapter
  • First Online:
Quadratic Residues and Non-Residues

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2171))

  • 1417 Accesses

Abstract

Proposition 1.1 of Chap. 1 shows that the solution of the general second-degree congruence ax 2 + bx + c ≡ 0 mod p for an odd prime p can be reduced to the solution of the congruence x 2 ≡ b 2 − 4ac mod p, and we also saw how the solution of x 2 ≡ n mod m for a composite modulus m can be reduced by way of Gauss’ algorithm to the solution of x 2 ≡ q mod p for prime numbers p and q. In this chapter, we will discuss a remarkable theorem known as the Law of Quadratic Reciprocity, which provides a very powerful method for determining the solvability of congruences of this last type. The theorem states that if p and q are distinct odd primes then the congruences x 2 ≡ q mod p and x 2 ≡ p mod q are either both solvable or both not solvable, unless p and q are both congruent to 3 mod 4, in which case one is solvable and the other is not. As a simple but no less striking example of the power of this theorem, suppose one wants to know if x 2 ≡ 5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that x 2 ≡ 5 mod 103 and x 2 ≡ 103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to x 2 ≡ 3 mod 5, which clearly has no solutions. Hence neither does x 2 ≡ 5 mod 103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. B. Berndt, Classical theorems on quadratic residues. Enseignement Math. 22, 261–304 (1976)

    MathSciNet  MATH  Google Scholar 

  2. H. Cohen, Number Theory, vol. I (Springer, New York, 2000)

    MATH  Google Scholar 

  3. J.B. Conway, Functions of One Complex Variable, vol. 1 (Springer, New York, 1978)

    Book  Google Scholar 

  4. K.L. Chung, A Course in Probability Theory (Academic Press, New York, 1974)

    MATH  Google Scholar 

  5. H. Davenport, On character sums in finite fields. Acta Math. 71, 99–121 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Davenport, Multiplicative Number Theory (Springer, New York, 2000)

    MATH  Google Scholar 

  7. H. Davenport, P. Erdös, The distribution of quadratic and higher residues. Publ. Math. Debrecen 2, 252–265 (1952)

    MathSciNet  MATH  Google Scholar 

  8. R. Dedekind, Sur la Th \(\acute{\text{e}}\) orie des Nombres Entiers Alg \(\acute{\text{e}}\) briques (1877); English translation by J. Stillwell (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  9. P.G.L. Dirichlet, Sur la convergence des series trigonom\(\acute{\text{e}}\) trique qui servent \(\grave{\text{a}}\) repr\(\acute{\text{e}}\) senter une fonction arbitraire entre des limites donn\(\acute{\text{e}}\) e. J. Reine Angew. Math. 4, 157–169 (1829)

    Google Scholar 

  10. P.G.L. Dirichlet, Beweis eines Satzes da\(\ss \) jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen enh\(\ddot{\text{a}}\) lt. Abh. K. Preuss. Akad. Wiss. 45–81 (1837)

    Google Scholar 

  11. P.G.L. Dirichlet, Recherches sur diverses applications de l’analyse infinit\(\acute{\text{e}}\) simal \(\grave{\text{a}}\) la th\(\acute{\text{e}}\) orie des nombres. J. Reine Angew. Math. 19, 324–369 (1839); 21 (1–12), 134–155 (1840)

    Google Scholar 

  12. P.G.L. Dirichlet, Vorlesungen über Zahlentheorie (1863); English translation by J. Stillwell (American Mathematical Society, Providence, 1991)

    Google Scholar 

  13. J. Dugundji, Topology (Allyn and Bacon, Boston, 1966)

    MATH  Google Scholar 

  14. P. Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35, 374–384 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Euler, Theoremata circa divisores numerorum in hac forma pa 2 ± qb 2 contentorum. Comm. Acad. Sci. Petersburg 14, 151–181 (1744/1746)

    Google Scholar 

  16. L. Euler, Theoremata circa residua ex divisione postestatum relicta. Novi Commet. Acad. Sci. Petropolitanea 7, 49–82 (1761)

    Google Scholar 

  17. L. Euler, Observationes circa divisionem quadratorum per numeros primes. Opera Omnia I-3, 477–512 (1783)

    Google Scholar 

  18. M. Filaseta, D. Richman, Sets which contain a quadratic residue modulo p for almost all p. Math. J. Okayama Univ. 39, 1–8 (1989)

    Google Scholar 

  19. C.F. Gauss, Disquisitiones Arithmeticae (1801); English translation by A. A. Clarke (Springer, New York, 1986)

    Google Scholar 

  20. C.F. Gauss, Theorematis arithmetici demonstratio nova. Göttingen Comment. Soc. Regiae Sci. XVI, 8 pp. (1808)

    Google Scholar 

  21. C.F. Gauss, Summatio serierum quarundam singularium. Göttingen Comment. Soc. Regiae Sci. 36 pp. (1811)

    Google Scholar 

  22. C.F. Gauss, Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae, 1818, Werke, vol. II (Georg Olms Verlag, Hildescheim, 1973), pp. 47–64

    Google Scholar 

  23. C.F. Gauss, Theorematis fundamentallis in doctrina residuis demonstrationes et amplicationes novae. Göttingen Comment. Soc. Regiae Sci. 4, 17 pp. (1818)

    Google Scholar 

  24. C.F. Gauss, Theoria residuorum biquadraticorum: comentatio prima. Göttingen Comment. Soc. Regiae Sci. 6, 28 pp. (1828)

    Google Scholar 

  25. C.F. Gauss, Theoria residuorum biquadraticorum: comentatio secunda. Göttingen Comment. Soc. Regiae Sci. 7, 56 pp. (1832)

    Google Scholar 

  26. D. Gröger, Gauß’ Reziprozitätgesetze der Zahlentheorie: Eine Gesamtdarstellung der Hinterlassenschaft in Zeitgemäßer Form (Erwin-Rauner Verlag, Augsburg, 2013)

    Google Scholar 

  27. E. Hecke, Vorlesungen über die Theorie der Algebraischen Zahlen (1923); English translation by G. Brauer and J. Goldman (Springer, New York, 1981)

    MATH  Google Scholar 

  28. D. Hilbert, Die Theorie der Algebraischen Zahlkörper (1897); English translation by I. Adamson (Springer, Berlin, 1998)

    Google Scholar 

  29. T. Hungerford, Algebra (Springer, New York, 1974)

    MATH  Google Scholar 

  30. K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  31. P. Kurlberg, The distribution of spacings between quadratic residues II. Isr. J. Math. 120, 205–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Kurlberg, Z. Rudnick, The distribution of spacings between quadratic residues. Duke Math. J. 100, 211–242 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.L. Lagrange, Probl\(\grave{\text{e}}\) mes ind\(\acute{\text{e}}\) termin\(\acute{\text{e}}\) s du second degr\(\acute{\text{e}}\). Mém. Acad. R. Berlin 23, 377–535 (1769)

    Google Scholar 

  34. J.L. Lagrange, Reserches d’Arithm\(\acute{\text{e}}\) tique, 2nde partie. Nouv. Mém. Acad. Berlin 349–352 (1775)

    Google Scholar 

  35. E. Landau, Elementary Number Theory. English translation by J. Goodman (Chelsea, New York, 1958)

    MATH  Google Scholar 

  36. A. Legendre, Reserches d’analyse indéterminée. Histoiré de l’Académie Royale des Sciences de Paris (1785), pp. 465–559, Paris 1788

    Google Scholar 

  37. A. Legendre, Essai sur la Th \(\acute{\text{e}}\) orie des Nombres (Paris, 1798)

    Google Scholar 

  38. F. Lemmermeyer, Reciprocity Laws (Springer, New York/Berlin/Heidelberg, 2000)

    Book  MATH  Google Scholar 

  39. W.J. LeVeque, Topics in Number Theory, vol. II (Addison-Wesley, Reading, 1956)

    MATH  Google Scholar 

  40. D. Marcus, Number Fields (Springer, New York, 1977)

    Book  MATH  Google Scholar 

  41. H. Montgomery, R. Vaughan, Multiplicative Number Theory I: Classical Theory (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  42. R. Nevenlinna, V. Paatero, Introduction to Complex Analysis (Addison-Wesley, Reading, 1969)

    Google Scholar 

  43. O. Ore, Les Corps Alg \(\acute{\text{e}}\) briques et la Th \(\acute{\text{e}}\) orie des Id \(\acute{\text{e}}\) aux (Gauthier-Villars, Paris, 1934)

    Google Scholar 

  44. G. Perel’muter, On certain character sums. Usp. Mat. Nauk. 18, 145–149 (1963)

    MathSciNet  MATH  Google Scholar 

  45. C. de la Vall\(\acute{\text{e}}\) e Poussin, Recherches analytiques sur la th\(\acute{\text{e}}\) orie des nombres premiers. Ann. Soc. Sci. Bruxelles 20, 281–362 (1896)

    Google Scholar 

  46. H. Rademacher, Lectures on Elementary Number Theory (Krieger, New York, 1977)

    MATH  Google Scholar 

  47. G.F.B. Riemann, \(\ddot{\text{U}}\) ber die Anzahl der Primzahlen unter einer gegebenen Gr\(\ddot{\text{o}}\ss \) e. Monatsberischte der Berlin Akademie (1859), pp. 671–680

    Google Scholar 

  48. K. Rosen, Elementary Number Theory and Its Applications (Pearson, Boston, 2005)

    Google Scholar 

  49. J. Rosenberg, Algebraic K-Theory and Its Application (Springer, New York, 1996)

    Google Scholar 

  50. W. Schmidt, Equations over Finite Fields: an Elementary Approach (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  51. A. Selberg, An elementary proof of Dirichlet’s theorem on primes in arithmetic progressions, Ann. Math. 50, 297–304 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Selberg, An elementary proof of the prime number theorem. Ann. Math. 50, 305–313 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Shamir, Identity-based cryptosystems and signature schemes, in Advances in Cryptology, ed. by G.R. Blakely, D. Chaum (Springer, Berlin, 1985), pp. 47–53

    Chapter  Google Scholar 

  54. J. Shohat, J.D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943)

    Book  MATH  Google Scholar 

  55. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Urbanowicz, K.S. Williams, Congruences for L-Functions (Kluwer, Dordrecht, 2000)

    Book  MATH  Google Scholar 

  57. A. Weil, Sur les Courbes Algébriques et les Variétes qui s’en Déduisent (Hermann et Cie, Paris, 1948)

    MATH  Google Scholar 

  58. A. Weil, Basic Number Theory (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  59. L. Weisner, Introduction to the Theory of Equations (MacMillan, New York, 1938)

    MATH  Google Scholar 

  60. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Wright, Quadratic non-residues and the combinatorics of sign multiplication. Ars Combin. 112, 257–278 (2013)

    MathSciNet  MATH  Google Scholar 

  62. S. Wright, Quadratic residues and non-residues in arithmetic progression. J. Number Theory 133, 2398–2430 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Wright, On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression, J. Combin. Number Theory 6, 85–111 (2015)

    MathSciNet  MATH  Google Scholar 

  64. B.F. Wyman, What is a reciprocity law? Am. Math. Monthly 79, 571–586 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wright, S. (2016). Gauss’ Theorema Aureum: The Law of Quadratic Reciprocity. In: Quadratic Residues and Non-Residues. Lecture Notes in Mathematics, vol 2171. Springer, Cham. https://doi.org/10.1007/978-3-319-45955-4_3

Download citation

Publish with us

Policies and ethics