Advertisement

Analyzing Unsatisfiability in Bounded Model Checking Using Max-SMT and Dual Slicing

  • Takuro KutsunaEmail author
  • Yoshinao Ishii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9933)

Abstract

Bounded model checking (BMC) with satisfiability modulo theories (SMT) is a powerful approach for generating test cases or finding bugs. However, it is generally difficult to determine an appropriate unrolling bound k in BMC. An SMT formula for BMC might be unsatisfiable because of the insufficiency of k. In this paper, we propose a novel approach for BMC using partial maximum satisfiability, in which the initial conditions of state variables are treated as soft constraints. State variables whose initial conditions are not satisfied in the solution of a maximum satisfiability solver can be regarded as bottlenecks in BMC. We can simultaneously estimate modified initial conditions for these bottleneck variables, with which the formula becomes satisfiable. Furthermore, we propose a method based on dual slicing to delineate the program path that is changed when we modify the initial conditions of the specified bottlenecks. The analysis results help us to estimate a suitable unrolling bound. We present experimental results using examples from the automotive industry to demonstrate the usefulness of the proposed method.

Notes

Acknowledgement

The authors are grateful for the useful comments and support provided by Tetsuya Tohdo and Hiroyuki Ihara at DENSO CORPORATION.

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Levy, J.: Sat-based maxsat algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P., Weissenbacher, G.: Mutation-based test case generation for simulink models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Gadkari, A.A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., Shashidhar, K.C.: AutoMOTGen: automatic model oriented test generator for embedded control systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 204–208. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Johnson, N., Caballero, J., Chen, K., McCamant, S., Poosankam, P., Reynaud, D., Song, D.: Differential slicing: identifying causal execution differences for security applications. In: IEEE Symposium on Security and Privacy, pp. 347–362 (2011)Google Scholar
  8. 8.
    Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: PLDI 2011, pp. 437–446 (2011)Google Scholar
  9. 9.
    Kim, M., Kim, Y., Kim, H.: A comparative study of software model checkers as unit testing tools: an industrial case study. TSE 37(2), 146–160 (2011)Google Scholar
  10. 10.
    Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C programs for fast counterexample detection. FMSD 47(1), 75–92 (2015)zbMATHGoogle Scholar
  11. 11.
    Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kutsuna, T., Ishii, Y., Yamamoto, A.: Abstraction and refinement of mathematical functions toward SMT-based test-case generation. Int. J. Softw. Tools Technol. Transfer 1–12 (2015)Google Scholar
  13. 13.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Reicherdt, R., Glesner, S.: Slicing matlab simulink models. In: ICSE 2012, pp. 551–561 (2012)Google Scholar
  15. 15.
    Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.: Successful use of incremental BMC in the automotive industry. In: Núñez, M., Güdemann, M. (eds.) Formal Methods for Industrial Critical Systems. LNCS, vol. 9128, pp. 62–77. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Shtrichman, O.: Pruning techniques for the SAT-based bounded model checking problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    The MathWorks Inc. http://www.mathworks.com
  19. 19.
    Weeratunge, D., Zhang, X., Sumner, W.N., Jagannathan, S.: Analyzing concurrency bugs using dual slicing. In: ISSTA 2010, pp. 253–264 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Toyota Central R&D Labs. Inc.NagakuteJapan

Personalised recommendations