Skip to main content

Principles of Photochemical Reactions

  • Chapter
  • First Online:
Essentials of Pericyclic and Photochemical Reactions

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 93))

Abstract

Photochemical reactions of organic molecules are now becoming important tools to improve the quality of our lives through the search of ‘green’ solutions of modern life. Photochemical reactions occur in light-sensitive organic molecules, in which organic molecules are excited or activated by absorption of light or photon. In excited molecules, the vertical electronic transitions, known as Franck Condon transitions, occur in the excited molecules, where the atomic nuclei remain in stationary states (known as Franck Condon Principle). Usually spin allowed π → π* and spin forbidden n → π* electronic transitions occur in most cases of photo-excited organic molecules. A fraction of the excited molecules undergo photochemical reactions and the rest are deactivated to ground states through the intramolecular and intermolecular photophysical relaxation processes, depicted in Jablonski diagram. In intramolecular relaxation processes, the activated molecules are deactivated by emitting photons through spin allowed fluorescence (S1 → S0) and spin forbidden phosphorescence (T1 → S0) processes. In intermolecular relaxation processes, the activated molecules transfer their excess energy to the ground state molecules in quenching processes through formation of the exciplexes/excimers. The quenching rate can be determined by the Stern–Volmer equation. Intermolecular electronic energy transfer from activated molecules to the ground state molecules occurs through long-range singlet–singlet and short-range triplet–triplet energy transfer processes. The former process is known as FRET process and the latter is known as Dexter energy transfer process. The mechanism of these photo-induced electron transfer (PET) processes and their applications in tumor therapy and other fields are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franck J (1926) Trans Farad Soc 21: 536; Condon E (1926) Physical Rev 27: 640; ibid (1928) 32: 858

    Google Scholar 

  2. Kozier JC, Cowan DO (1978) Acc Chem Res 11:334

    Article  Google Scholar 

  3. Jablonski A (1933) Nature 131:839

    Article  CAS  Google Scholar 

  4. Lippert E, Luder W, Moll F, Nagele W, Boos H, Prigge H, Blankenstein IS (1961) Angew Chem 73:695

    Article  CAS  Google Scholar 

  5. Williams ATR, Winfield SA, Miller JN (1983) Analyst 108:1067

    Article  CAS  Google Scholar 

  6. Guilbault GG (1973) Practical fluorescence: theory, methods and techniques. Marcel Dekkar, New York; Wehry EL (1976) Modern fluorescence spectroscopy, vol 1. Plenum Press, New York

    Google Scholar 

  7. Turro NJ (1991) Modern molecular photochemistry. University Science Books, New York

    Google Scholar 

  8. Sharf B, Silbey R (1970) Chem Phys Lett 5:314

    Article  CAS  Google Scholar 

  9. Moore WM, Hammond GS, Foss RP (1961) J Am Chem Soc 83:2789

    Article  CAS  Google Scholar 

  10. Schulman SG (1977) Fluorescence and phosphorescence spectroscopy: physiochemical principles and practice. Pergamon, Elmsford, New York

    Google Scholar 

  11. Turro NJ, Dalton JC, Weiss DS (1969) Org Photochem 2:1

    CAS  Google Scholar 

  12. Pan B, Xing B, Liu W, Xing G, Tao S (2007) Chemosphere 69:1555

    Article  CAS  Google Scholar 

  13. Forster T (1948) Annalen der Physik 437:55; Barigelletti F, Flamigi L (2000) Chem Soc Rev 29:1

    Google Scholar 

  14. Dexter DL (1951) J Chem Phys 21:836

    Article  Google Scholar 

  15. Bayrakceken F (2008) Spectrochemica Acta Part A 71:603

    Article  Google Scholar 

  16. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K (2009) Nature 459:234

    Article  CAS  Google Scholar 

  17. Monguzzi A, Mezyk J, Schtognella F, Tubino R, Meinardi F (2008) Physical Rev B 78:195112

    Article  Google Scholar 

  18. Singh Rachford TN, Castellano FN (2010) Coodination. Chem Rev 254:2560

    CAS  Google Scholar 

  19. Josefsen LB, Boyle RW (2008) Metal—Based Drugs 276109; Richter A, Waterfield E, Jain AK, Sternberg E, DolphinD, Levy JG (1990) Photochem Photobiol 144:221

    Google Scholar 

  20. Prasanna de Silva A, Nimal Gunaratne HQ, Gunnlaugsson T, Huxley AJM, Mc Coy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515

    Google Scholar 

  21. Bolzani V, Credi A, Raymo FM, Stoddart JF (2000) Angew Chem Int Ed 39:3348; Bolzani V, Credi A, Mattersteig G, Matthews OA et al (2000) J Org Chem 65:1924

    Google Scholar 

  22. Marcus RA (1964) Ann Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  23. Kuciauskas D, Lin S, Seely GR, Moore AL, Moore TA, Gust D, Drovetskaya T, Reed C, Boyd PDW (1996) J Phys Chem 100:15926

    Article  CAS  Google Scholar 

  24. Wagner PJ, Hammond GS (1968) Adv Photochem 5:21

    CAS  Google Scholar 

  25. Calvert JG, Pitts JN (1966) Photochemistry. Wiley, New York

    Google Scholar 

  26. Haas Y, Zilberg S (2001) J Photochem Photobiol 144:221

    Article  CAS  Google Scholar 

  27. Norrish RGW, Porter C (1949) Nature 164:658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dinda, B. (2017). Principles of Photochemical Reactions. In: Essentials of Pericyclic and Photochemical Reactions. Lecture Notes in Chemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-45934-9_6

Download citation

Publish with us

Policies and ethics