Skip to main content

The Effect of Lithium on Gene Expression Modulation

  • Chapter
  • First Online:
The Science and Practice of Lithium Therapy

Abstract

Lithium has been shown to influence the expression of hundreds of genes. Through this regulation, lithium interferes with a large number of cellular functions, including inositol metabolism, circadian rhythms, apoptosis and those neuroprotective pathways that are thought to play a role in the pathophysiology of bipolar disorder. The mechanisms through which lithium regulates gene expression are still not completely understood. However, converging data suggest that transcription factors and microRNAs, as well as epigenetic factors, may constitute key targets of lithium. In this chapter, we present and discuss the most compelling findings on lithium’s effects on gene expression modulation, emphasizing those studies carried out in patient-derived cell lines, as these have the potential to highlight genes that may constitute biomarkers of the clinical efficacy of lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alda M, Shao L, Wang JF et al (2013) Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: an endophenotype of lithium-responsive bipolar disorder? Bipolar Disord 15:824–831

    Article  CAS  PubMed  Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium-treated rats. Nat New Biol 233:267–268

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Shao L, Wang JF et al (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Bundo M, Sugawara H et al (2013) Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int J Neuropsychopharmacol 16:2285–2294

    Article  CAS  PubMed  Google Scholar 

  • Azab AN, He Q, Ju S et al (2007) Glycogen synthase kinase-3 is required for optimal de novo synthesis of inositol. Mol Microbiol 63:1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Bachmann RF, Wang Y, Yuan P et al (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12(6):805–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldessarini RJ, Tondo L, Davis P et al (2006) Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord 8(5 Pt 2):625–639

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1989) The Albert Lasker medical awards. Inositol trisphosphate, calcium, lithium, and cell signaling. JAMA 262:1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Buttner N, Bhattacharyya S, Walsh J et al (2007) DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 93:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Che Y, Wang JF, Shao L et al (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatr Neurosci 35:296–302

    Article  Google Scholar 

  • Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274:6039–6042

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zeng WZ, Yuan PX et al (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72:879–882

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang N, Burmeister M et al (2009) MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 12:975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng HY, Papp JW, Varlamova O et al (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce N, Mathe AA, Gelfo F et al (2014) Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J Psychopharmacol 28:964–972

    Article  CAS  PubMed  Google Scholar 

  • Cruceanu C, Alda M, Grof P et al (2012) Synapsin II is involved in the molecular pathway of lithium treatment in bipolar disorder. PLoS One 7:e32680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Addario C, Dell’osso B, Palazzo MC et al (2012) Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology 37:1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  • De Pietri TD, Pulvers JN, Haffner C et al (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    Article  Google Scholar 

  • de Sousa RT, van de Bilt MT, Diniz BS et al (2011) Lithium increases plasma brain-derived neurotrophic factor in acute bipolar mania: a preliminary 4-week study. Neurosci Lett 494:54–56

    Article  PubMed  Google Scholar 

  • Du J, Gray NA, Falke CA et al (2004) Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 24:6578–6589

    Article  CAS  PubMed  Google Scholar 

  • Du J, Creson TK, Wu LJ et al (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28:68–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel SR, Creson TK, Hao Y et al (2009) The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14:448–461

    Article  CAS  PubMed  Google Scholar 

  • Farah R, Khamisy-Farah R, Amit T et al (2013) Lithium’s gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 33:411–420

    Article  CAS  PubMed  Google Scholar 

  • Fass DM, Schroeder FA, Perlis RH et al (2014) Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 264:112–130

    Article  CAS  PubMed  Google Scholar 

  • Fauroux CM, Freeman S (1999) Inhibitors of inositol monophosphatase. J Enzym Inhib 14(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Fiori LM, Turecki G (2008) Implication of the polyamine system in mental disorders. J Psychiatry Neurosci 33:102–110

    PubMed  PubMed Central  Google Scholar 

  • Gilad GM, Gilad VH (1996) Brain polyamine stress response: recurrence after repetitive stressor and inhibition by lithium. J Neurochem 67(5):1992–1996

    Article  CAS  PubMed  Google Scholar 

  • Gilad GM, Gilad VH (2003) Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell Mol Neurobiol 23(4-5):637–649

    Article  CAS  PubMed  Google Scholar 

  • Gitlin M, Frye MA (2012) Maintenance therapies in bipolar disorders. Bipolar Disord 14(Suppl 2):51–65

    Article  PubMed  Google Scholar 

  • Gould TD, Einat H, O’Donnell KC et al (2007) Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 32:2173–2183

    Article  CAS  PubMed  Google Scholar 

  • Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78:1219–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guipponi M, Deutsch S, Kohler K et al (2009) Genetic and epigenetic analysis of SSAT gene dysregulation in suicidal behavior. Am J Med Genet B Neuropsychiatr Genet 150B(6):799–807

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Xia Z (2000) Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp (Wars) 60:531–545

    CAS  Google Scholar 

  • Hunsberger JG, Fessler EB, Chibane FL et al (2013) Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 5:450–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huzayyin AA, Andreazza AC, Turecki G et al (2014) Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol 17:561–569

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Jakopec S, Karlovic D, Dubravcic K et al (2008) Lithium effect on glutamate induced damage in glioblastoma cells. Coll Antropol 32(Suppl 1):87–91

    CAS  PubMed  Google Scholar 

  • Keller S, Sarchiapone M, Zarrilli F et al (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 67:258–267

    Article  CAS  PubMed  Google Scholar 

  • Khare T, Pal M, Petronis A (2011) Understanding bipolar disorder: the epigenetic perspective. In: Behavioral neurobiology of bipolar disorder and its treatment. Springer Science + Business Media, New York pp 31–49

    Google Scholar 

  • Kinoshita C, Miyazaki K, Ishida N (2012) Chronic stress affects PERIOD2 expression through glycogen synthase kinase-3beta phosphorylation in the central clock. Neuroreport 23:98–102

    Article  CAS  PubMed  Google Scholar 

  • Klempan TA, Rujescu D, Merette C et al (2009) Profiling brain expression of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet B Neuropsychiatr Genet 150B(7):934–943

    Article  CAS  PubMed  Google Scholar 

  • Kozikowski AP, Gunosewoyo H, Guo S et al (2011) Identification of a glycogen synthase kinase-3beta inhibitor that attenuates hyperactivity in CLOCK mutant mice. ChemMedChem 6:1593–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang X, Meintzer MK et al (2000) Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol 20:9356–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lu WQ, Beesley S et al (2012) Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One 7:e33292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linseman DA, Butts BD, Precht TA et al (2004) Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24:9993–10002

    Article  CAS  PubMed  Google Scholar 

  • Lopez dL, Jaitovich-Groisman I, Cruceanu C et al (2010) Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int J Neuropsychopharmacol 13:1397–1410

    Article  Google Scholar 

  • Lowthert L, Leffert J, Lin A et al (2012) Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation. Biol Mood Anxiety Disord 2:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi GS, Bargh DM, McIntyre R et al (2012) Balanced efficacy, safety, and tolerability recommendations for the clinical management of bipolar disorder. Bipolar Disord 14(Suppl 2):1–21

    Article  PubMed  Google Scholar 

  • McCarthy MJ, Welsh DK (2012) Cellular circadian clocks in mood disorders. J Biol Rhythms 27:339–352

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MJ, Wei H, Marnoy Z et al (2013) Genetic and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry 3:e318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BH, Wahlestedt C (2010) MicroRNA dysregulation in psychiatric disease. Brain Res 1338:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohawk JA, Miranda-Anaya M, Tataroglu O et al (2009) Lithium and genetic inhibition of GSK3beta enhance the effect of methamphetamine on circadian rhythms in the mouse. Behav Pharmacol 20:174–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore GJ, Bebchuk JM, Parrish JK et al (1999) Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry 156:1902–1908

    CAS  PubMed  Google Scholar 

  • Mustak MS, Hegde ML, Dinesh A et al (2010) Evidence of altered DNA integrity in the brain regions of suicidal victims of bipolar depression. Indian J Psychiatry 52:220–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngok-Ngam P, Watcharasit P, Thiantanawat A et al (2013) Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell Mol Biol Lett 18:58–74

    Article  CAS  PubMed  Google Scholar 

  • Osland TM, Ferno J, Havik B et al (2011) Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells. J Psychopharmacol 25:924–933

    Article  CAS  PubMed  Google Scholar 

  • Pandey GN, Dwivedi Y, Rizavi HS et al (2010) Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Prog Neuropsychopharmacol Biol Psychiatry 34:645–651

    Article  CAS  PubMed  Google Scholar 

  • Pidsley R, Mill J (2011) Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 69:146–156

    Article  PubMed  Google Scholar 

  • Rong H, Liu TB, Yang KJ et al (2011) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45:92–95

    Article  PubMed  Google Scholar 

  • Roybal K, Theobold D, Graham A et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104(15):6406–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph D, Tafuri A, Gass P et al (1998) Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 95:4481–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutten BP, Mill J (2009) Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull 35:1045–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Saus E, Brunet A, Armengol L et al (2010) Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients. J Psychiatr Res 44:971–978

    Article  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  CAS  PubMed  Google Scholar 

  • Sequeira A, Gwadry FG, Ffrench-Mullen JM et al (2006) Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch Gen Psychiatry 63(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Sequeira A, Klempan T, Canetti L et al (2007) Patterns of gene expression in the limbic system of suicides with and without major depression. Mol Psychiatry 12(7):640–655

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Cui J, Young LT et al (2008) The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151:518–524

    Article  CAS  PubMed  Google Scholar 

  • Silverstone PH, McGrath BM (2009) Lithium and valproate and their possible effects on the myo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry 21:414–423

    Article  PubMed  Google Scholar 

  • Squassina A, Manchia M, Chillotti C et al (2013) Differential effect of lithium on spermidine/spermine N1-acetyltransferase expression in suicidal behaviour. Int J Neuropsychopharmacol 16:2209–2218

    Article  CAS  PubMed  Google Scholar 

  • Strachan T, Read AP (2011) Human molecular genetics. Garland Science/Taylor & Francis Group, New York

    Google Scholar 

  • Sugawara H, Iwamoto K, Bundo M et al (2010) Effect of mood stabilizers on gene expression in lymphoblastoid cells. J Neural Transm 117:155–164

    Article  CAS  PubMed  Google Scholar 

  • Sugawara H, Iwamoto K, Bundo M et al (2011) Hypermethylation of serotonin transporter gene in bipolar disorder detected by epigenome analysis of discordant monozygotic twins. Transl Psychiatry 1:e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Young LT, Wang JF et al (2004) Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology 29:799–804

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng M, Alda M, Xu L et al (2008) BDNF protein levels are decreased in transformed lymphoblasts from lithium-responsive patients with bipolar disorder. J Psychiatry Neurosci 33:449–453

    PubMed  PubMed Central  Google Scholar 

  • Turenne GA, Price BD (2001) Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53’s transcriptional activity. BMC Cell Biol 2:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  • Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88:386–401

    CAS  PubMed  Google Scholar 

  • Yang S, Van Dongen HP, Wang K et al (2009) Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry 14:143–155

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Arraf Z (2004) Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 46:1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Gray NA, Yuan P et al (2005) The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 25:4493–4502

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Yuan P, Wang Y et al (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Squassina PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Squassina, A., Pisanu, C., Alda, M. (2017). The Effect of Lithium on Gene Expression Modulation. In: Malhi, G., Masson, M., Bellivier, F. (eds) The Science and Practice of Lithium Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-45923-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45923-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45921-9

  • Online ISBN: 978-3-319-45923-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics