Lagrangian Approach to Phytoplankton Mesoscale Biogeography in the Kerguelen Region

  • Alice Della PennaEmail author
  • Simon Wotherspoon
  • Thomas W. Trull
  • Silvia De Monte
  • Craig Johnson
  • Francesco d’Ovidio
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


One of the purposes of biogeography is to identify areas within which a characteristic ecosystem is expected to occur. In the case of phytoplanktonic communities this knowledge is key to separate regions characterized by different biogeochemical processes, design efficient sampling strategies and recognize ecological hotspots. Meso- and submesoscale (1–100 km, few days to months) high variability interacts with typical bloom spatial and temporal scales and makes investigating phytoplankton biogeography challenging especially in remote regions like the Southern Ocean, where in-situ observations are extremely sparse. In this study we use a Lagrangian approach to interpret the mesoscale biogeography of diatom dominance of iron-enriched Kerguelen bloom. We define a “threshold” model relating diatom dominance with Lagrangian properties of water parcels. We find out that, in spite of the simplicity of this approach, the threshold model can reproduce the plume of diatom dominance that can be observed using the ocean color re-analysis PHYSAT.


Southern Ocean Threshold Model Lagrangian Approach Phytoplanktonic Group Water Parcel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Longhurst AR (2010) Ecological Geography of the Sea. Alan R. Longhurst. Academic, London. ISBN 0124555594Google Scholar
  2. 2.
    Oliver, M. J., and A. J. Irwin (2008), Objective global ocean biogeographic provinces, Geophys. Res. Lett., 35:L15601. doi: 10.1029/2008GL034238 ADSCrossRefGoogle Scholar
  3. 3.
    Dutkiewicz S, Follows MJ, Bragg JG (2009) Modeling the coupling of ocean ecology and biogeochemistry. Glob Biogeochem Cycles 23:GB4017. doi: 10.1029/2008GB003405 ADSCrossRefGoogle Scholar
  4. 4.
    Dutkiewicz, S., M. J. Follows, and J. G. Bragg (2009), Modeling the coupling of ocean ecology and biogeochemistry, Global Biogeochem. Cycles, 23, GB4017, doi: 10.1029/2008GB003405.CrossRefGoogle Scholar
  5. 5.
    Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  6. 6.
    Allen JT et al (2005) Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437:728–732ADSCrossRefGoogle Scholar
  7. 7.
    Palmer TN, Lindstrom E (1991) Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature 350Google Scholar
  8. 8.
    Trull TW et al (2014) Chemometric perspectives on plankton community responses to natural iron fertilization over and downstream of the Kerguelen plateau in the southern ocean. Biogeosci Discuss 11:13841–13903ADSCrossRefGoogle Scholar
  9. 9.
    De Monte S, Soccodato A, Alvain S, d’Ovidio F (2013) Can we detect oceanic biodiversity hotspots from space&quest. ISME J 7:2054–2056CrossRefGoogle Scholar
  10. 10.
    Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic peninsula in response to a regional warming trend. Glob Chang Biol 10:1973–1980CrossRefGoogle Scholar
  11. 11.
    Kopczynska EE (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. J Plankton Res 14:1031–1054CrossRefGoogle Scholar
  12. 12.
    Barton AD et al (2013) The biogeography of marine plankton traits. Ecol Lett 16:522–534CrossRefGoogle Scholar
  13. 13.
    Boyd PW et al (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617ADSCrossRefGoogle Scholar
  14. 14.
    Boyd PW, Arrigo KR, Strzepek R, vanDijken GL (2012) Mapping phytoplankton iron utilization: insights into Southern Ocean supply mechanisms. J Geophys Res 117:C06009. doi:  10.1029/2011JC007726.ADSCrossRefGoogle Scholar
  15. 15.
    Mongin M, Molina E, Trull TW (2008) Seasonality and scale of the Kerguelen plateau phytoplankton bloom: a remote sensing and modeling analysis of the influence of natural iron fertilization in the southern ocean. Deep Sea Res II Top Stud Oceanogr 55:880–892ADSCrossRefGoogle Scholar
  16. 16.
    Lasbleiz M et al (2014) Pigments, elemental composition (c, n, p, and si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the southern ocean. Biogeosciences 11:5931–5955ADSCrossRefGoogle Scholar
  17. 17.
    Uitz J et al (2009) A phytoplankton class-specific primary production model applied to the Kerguelen islands region (southern ocean). Deep Sea Res Part I Oceanogr Res Pap 56:541–560ADSCrossRefGoogle Scholar
  18. 18.
    Mongin MM, Abraham ER, Trull TW (2009) Winter advection of iron can explain the summer phytoplankton bloom that extends 1000 km downstream of the Kerguelen plateau in the southern ocean. J Mar Res 67:225–237CrossRefGoogle Scholar
  19. 19.
    d’Ovidio F et al (2015) The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen plateau. Biogeosci Discuss 12:779–814ADSCrossRefGoogle Scholar
  20. 20.
    Alvain S, Moulin C, Dandonneau Y, Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep Sea Res Part I Oceanogr Res Pap 52:1989–2004ADSCrossRefGoogle Scholar
  21. 21.
    Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Global Biogeochem Cycles 22:GB3001. doi: 10.1029/2007GB003154 ADSCrossRefGoogle Scholar
  22. 22.
    Hastie, Trevor J., and Robert J. Tibshirani. Generalized additive models. Vol. 43. CRC, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alice Della Penna
    • 1
    • 2
    Email author
  • Simon Wotherspoon
    • 3
  • Thomas W. Trull
    • 4
    • 5
  • Silvia De Monte
    • 6
  • Craig Johnson
    • 3
  • Francesco d’Ovidio
    • 7
  1. 1.Quantitative Marine Sciences PhD Program, Institute for Marine and Antarctic StudiesUniversity of Tasmania and Commonwealth Scientific and Industrial Research OrganisationHobartAustralia
  2. 2.Sorbonne UniversitésUniv Paris Diderot CitéParisFrance
  3. 3.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  4. 4.Commonwealth Scientific and Industrial Research OrganisationOceans and Atmosphere FlagshipHobartAustralia
  5. 5.Antarctic Climate and Ecosystems Cooperative Research CentreHobartAustralia
  6. 6.École Normale SupérieureUMR 7625 Ecologie et EvolutionParisFrance
  7. 7.Sorbonne UniversitésUPMC Univ Paris 06ParisFrance

Personalised recommendations