Skip to main content

Understanding and Modeling the Complexity of the Immune System

  • Conference paper
  • First Online:
Book cover First Complex Systems Digital Campus World E-Conference 2015

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

The immune system is a complex biological micro-ecosystem, adaptive, highly diversified, self-organized and cognitive network of cells, and molecular entities with degeneracy properties. The adaptive immune system has evolved into a complex system of billions of highly diversified lymphocytes all interacting as a connective dynamic multi-scale organized and distributed system, in order to collectively insure body identity and integrity. This complex system insures species preservation of symbiotic and polygenomic organisms. The immune system is characterized by complexity at many different levels; network organization during the development, through fluid cell populations with inter- and intra-cell signalling, an extraordinary lymphocyte somatic receptor diversity, lymphocyte clonotype selection and competition at cell level, migration and interaction inside the immunological tissues and fluid dissemination through the organism, homeostatic regulation, while rapid adaptation to a changing environment. Lymphocytes are the key actors of the immune system of vertebrates, in the middle of a multi-scale biological organization “from molecule to organism,” and at the confluence with other different biological systems and the environment. The perception of antigens induces a network of immuno-receptors that could be viewed as an internal representation of antigens. Fluctuations, variability, and diversity are key factor for the immune system to adapt perturbations and aging and to be or not resilient. Theoretical approaches of this complex system and multi-scale dynamic modeling are a challenge in the domain of complex systems. Theoretical, mathematics, and computer models developed to improve our understanding of the multi-scale complexity of the immune system should be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Acknowledgments

This material is based upon work supported by the Complex Systems Institute of Paris Île-de-France (ISC-PIF) and DIM Ile de France; RNSC and support to the ImmunoComplexiT network; CNRS Programme Interdisciplinaire Longévité & Vieillissement, ATC Vieillissement INSERM; Emergence-UPMC program; PHC Tournesol EGIDE, CNRS PEPS BMI; and Investissements d’Avenir program (ANR-11-IDEX-0004-02), LabEx Transimmunom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Thomas-Vaslin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Thomas-Vaslin, V. (2017). Understanding and Modeling the Complexity of the Immune System. In: Bourgine, P., Collet, P., Parrend, P. (eds) First Complex Systems Digital Campus World E-Conference 2015. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-45901-1_29

Download citation

Publish with us

Policies and ethics