Skip to main content

How Do Crystals Nucleate and Grow: Ostwald’s Rule of Stages and Beyond

  • Chapter
  • First Online:

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

W. Ostwald predicted with the “rule of stages” formulated by him that phase formation processes in complex condensed matter systems may proceed step by step via different evolution paths involving a discrete series of metastable states, which can be formed in a macroscopic form at the given thermodynamic conditions, until finally, the most stable phase will be reached. Advancing this idea, it was shown in recent years by us that in condensation and boiling, as well as in segregation and crystallization processes in multi-component liquid and solid solutions, critical clusters may be formed and evolve via a continuous sequence of states with properties which may differ from the properties of any of the macroscopic phases present in the respective phase diagram. The kinetics of nucleation proceeds hereby via a scenario similar to spinodal decomposition, i.e., via a continuous amplification of density and/or composition differences accompanied eventually by sequential discrete changes of the structure of the system. The basic ideas and results of this theoretical approach developed by us are described in the present chapter. Recently published experimental results on crystal nucleation are discussed in detail giving additional confirmation of these conclusions. As a second man topic devoted also to the theoretical description of crystal nucleation, the relevance of the concepts of fragility of the liquid for the understanding of crystal nucleation and growth in glass-forming liquids is explored. Finally, a number of directions of research are discussed which may lead to new insights into the complex phenomena of crystal formation and growth processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gibbs JW (1928) On the equilibrium of heterogeneous substances, Trans. Connecticut Academy of Sciences 3, 108, 343 (1875–79); The collected works, vol 1, Thermodynamics. Longmans, New York—London—Toronto

    Google Scholar 

  2. van der Waals JD (1894) Verhandel. Konink. Akad. Weten. Amsterdam (sect. 1), 1, 56 (1893); Z Phys Chemie 13:657

    Google Scholar 

  3. Rowlinson JS (1979) Translation of J. D. van der Waals’ The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys 20:197

    Article  Google Scholar 

  4. Schmelzer JWP, Gutzow IS, Schmelzer J Jr (2000) J Chem Phys 112:3820

    Article  CAS  Google Scholar 

  5. Schmelzer JWP, Boltachev GSh, Baidakov VG (2006) J Chem Phys 114:194502

    Google Scholar 

  6. Chung S-Y, Kim Y-M, Kim J-G, Kim Y-J (2009) Nat Phys 5:68

    Article  CAS  Google Scholar 

  7. Billinge SJL (2009) Nat Phys 5:13

    Article  CAS  Google Scholar 

  8. Ostwald W (1897) Z Phys Chemie 22:289

    CAS  Google Scholar 

  9. Hillert M (1956) A theory of nucleation of solid metallic solutions. Sc.D. Thesis, Massachusetts Institute of Technology

    Google Scholar 

  10. Cahn JW, Hilliard JE (1959) J Chem Phys 28, 258 (1958); 31:688

    Google Scholar 

  11. Nishioka K, Kusaka I (1992) J Chem Phys 96:5370

    Article  CAS  Google Scholar 

  12. Debenedetti PG, Reiss H (1998) J Chem Phys 108:5498

    Article  CAS  Google Scholar 

  13. Baidakov VG, Boltachev GSh, Schmelzer JWP (2000) J Colloid Interface Sci 231:312

    Article  CAS  Google Scholar 

  14. Stranski IN, Totomanov D (1933) Z Phys Chemie A 163:399

    Google Scholar 

  15. Scheil E (1952) Z Metallkunde 43:40

    CAS  Google Scholar 

  16. Hobstetter JN (1949) Trans. American Inst Min (Metall) Eng 180:121

    Google Scholar 

  17. Burke J (1965) The kinetics of phase transformations in metals. Pergamon Press, New York

    Google Scholar 

  18. Gerlach W (1949) Z Metallkunde 40:281

    CAS  Google Scholar 

  19. Masing G (1950) Lehrbuch der Allgemeinen Metallkunde. Springer, Berlin

    Book  Google Scholar 

  20. Becker R (1938) Ann Phys 32:128

    Article  CAS  Google Scholar 

  21. Abyzov AS, Schmelzer JWP (2007) J Chem Phys 127:114504

    Article  Google Scholar 

  22. Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer JWP (2006) J Non-Cryst Solids 352:2681

    Article  CAS  Google Scholar 

  23. Schmelzer JWP, Gokhman AR, Fokin VM (2004) J Colloid Interface Sci 272:109

    Article  CAS  Google Scholar 

  24. Schmelzer JWP, Abyzov AS, Möller J (2004) Chem Phys 121:6900

    CAS  Google Scholar 

  25. Tatchev D, Hoell A, Kranold R, Armyanov S (2005) Phys B 369:8

    Article  CAS  Google Scholar 

  26. Tatchev D, Goerigk G, Valova E, Dille J, Kranold R, Armyanov S, Delplancke J-L (2005) J Appl Crystallogr 38:787

    Article  CAS  Google Scholar 

  27. Schmelzer JWP, Abyzov AS (2007) J Eng Thermophys 16:119

    Article  Google Scholar 

  28. Schmelzer JWP (2009) Generalized Gibbs thermodynamics and nucleation-growth phenomena. In: Rzoska S, Drozd-Rzoska A, Mazur V (eds) Proceedings of the NATO advanced research workshop “metastable systems under pressure”, Odessa, Ukraine, 4–8 Oct 2008. Springer, pp 389–402

    Google Scholar 

  29. Schmelzer JWP, Fokin VM, Abyzov AS, Zanotto ED, Gutzow IS (2010) Int J Appl Glass Sci 1:16

    Article  CAS  Google Scholar 

  30. Gutzow IS, Schmelzer JWP (2013) The vitreous state: thermodynamics, structure, rheology, and crystallization, 1st edn. Springer, Berlin-Heidelberg, 1995; Second enlarged edition. Springer, Heidelberg

    Google Scholar 

  31. Angell CA (1995) Science 267:1924

    Article  CAS  Google Scholar 

  32. Martinez L-M, Angell CA (2001) Nature 410:663

    Article  CAS  Google Scholar 

  33. Gallo LSA, Mosca TM, Teider BH, Polyakova IG, Rodrigues ACM, Zanotto ED, Fokin VM (2014) J Non-Cryst Solids 408:102

    Article  Google Scholar 

  34. Orava J, Greer AL (2014) J Chem Phys 140:214504

    Article  CAS  Google Scholar 

  35. Wilde G (2014) Early stages of crystal formation in glass-forming metallic alloys. In: Schmelzer JWP (ed) Glass: selected properties and crystallization. de Gruyter, Berlin, pp 95–136

    Google Scholar 

  36. Oldekop W (1957) Glastechnische Berichte 30:8

    CAS  Google Scholar 

  37. Laughlin WT, Uhlmann DR (1972) J Phys Chem 76:2317

    Article  CAS  Google Scholar 

  38. Nemilov SV (1995) Thermodynamic and kinetic aspects of the vitreous state. CRC Press, Boca Raton

    Google Scholar 

  39. Ediger MD, Harrowell P, Yu L (2008) J Chem Phys 128:034709

    Article  CAS  Google Scholar 

  40. Schmelzer JWP, Abyzov AS, Fokin VM, Schick C, Zanotto ED (2015) J Non-Crystalline Solids 429:24

    Google Scholar 

  41. Schmelzer JWP, Abyzov AS, Fokin VM, Schick C, Zanotto ED (2015) J Non-Crystalline Solids 428:68

    Google Scholar 

  42. Schmelzer JWP, Abyzov AS, Fokin VM, Schick C, Zanotto ED (2015) J Non-Crystalline Solids 429:45

    Google Scholar 

  43. Tammann G (1933) Der Glaszustand. Leopold Voss Verlag, Leipzig

    Google Scholar 

  44. Tammann G (1904) Z Elektrochemie 10:532

    Article  Google Scholar 

  45. Schmelzer JWP, Gutzow IS (2011) Glasses and the glass transition. Wiley-VCH, Berlin-Weinheim

    Book  Google Scholar 

  46. Boltachev GSh, Schmelzer JWP (2010) J Chem Phys 133:134509

    Article  Google Scholar 

  47. Schmelzer JWP, Boltachev GSh, Abyzov AS (2013) J Chem Phys 139:034702

    Article  Google Scholar 

  48. Abyzov AS, Schmelzer JWP (2014) J Chem Phys 138, 164504 (2013); 140:244706

    Google Scholar 

  49. Schmelzer JWP (2012) J Chem Phys 136:074512

    Article  Google Scholar 

  50. Zanotto ED, Schmelzer JWP, Fokin VM, Nucleation, growth, and crystallization in inorganic glasses, submitted to publication

    Google Scholar 

  51. Wright AC (2013) Int J Appl Glass Sci 5:31

    Google Scholar 

  52. Johari GP, Schmelzer JWP (2014) Crystal nucleation and growth in glass-forming systems: some new results and open problems. In: Schmelzer JWP (ed) Glass: selected properties and crystallization. de Gruyter, Berlin, pp 531–590

    Google Scholar 

  53. Cooper AR (1982) J Non-Cryst Solids 49:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürn W. P. Schmelzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmelzer, J.W.P., Abyzov, A.S. (2017). How Do Crystals Nucleate and Grow: Ostwald’s Rule of Stages and Beyond. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_9

Download citation

Publish with us

Policies and ethics