Advertisement

Clapeyron and Ehrenfest Equations and Hyper-free Energy for Partly Open Systems

  • Pavel Holba
  • David SedmidubskýEmail author
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

Following the approach applied by Clapeyron to describe sharp phase transitions in P-T diagrams of unary systems as well as that used by Ehrenfest for so-called second-order phase transitions, we derived a set of analogous equations for partly open binary and higher-order systems. These systems share one or more components with the surroundings (reservoir), and thus, their content in the system is given by their chemical potentials (activities, a f) in the reservoir. Hence, in addition to P-T diagrams, the phase relations can be represented in Ta f, Pa f, and a fa g phase diagrams and three additional Clapeyronian equations describe the corresponding borderlines delimiting the different phase fields. Moreover, it is shown that Ehrenfest equations cannot be applied for λ-transitions; however, their applicability is demonstrated for so-called partial phase transitions such as liquidus curves in closed binary systems. For partly open systems, 28 new Ehrenfestian equations are derived for partial phase transitions which involve, apart from the changes of heat capacity, thermal expansion and compressibility appearing in the original three Ehrenfest equations, the changes of newly defined quantities such as thermal, pressure, proper, and mutual plutabilities. The Clapeyronian and Ehrenfestian equations derived in this chapter can be useful for equilibrium studies and construction of thermodynamic models of nonstoichiometric phases as well as for the construction of simple phase diagrams reflecting the equilibrium phase relations under a given controlled atmosphere.

Keywords

Gibbs Free Energy Partial Transition Clapeyronian Equation Free Component Nonstoichiometric Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

P. Holba acknowledges the support of Ministry of Education of the Czech Republic in the framework of CENTEM PLUS project (LO1402) operated under the “National Sustainability Programme I.”

References

  1. 1.
    Lehmann O (1988) Molekularphysik 2. Engelmann, Leipzig, pp 398–415Google Scholar
  2. 2.
    Hillert M (1998) Phase equilibria, phase diagrams and phase transformation. Their thermodynamic basis. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Elliott JR, Lira CT. (1999) Introductory Chemical Engineering Thermodynamics, 1st Ed., Prentice Hall PTR: 184Google Scholar
  4. 4.
    Clapeyron E (1834) Puissance motrice de la chaleur, Journal de l’École Royale Polytechnique 14(23):153–190Google Scholar
  5. 5.
    Clausius R (1850) Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Pogg Ann (Annalen der Physik) 79(368–397):500–524CrossRefGoogle Scholar
  6. 6.
    Ehrenfest P (1933) Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechenden Singularitäten des thermodynamischen Potentiales, Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 36: 153–157; Communications from the Physical Laboratory of the University of Leiden, Supplement No. 75bGoogle Scholar
  7. 7.
    Keesom WH, de Haas WJ (1932) Die Umwandlung flüssiges Helium I-Helium II unter Druck. Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 34:605; Communications from the Physical Laboratory of the University of Leiden, Communication No. 216bGoogle Scholar
  8. 8.
    de l’Hôpital G (1696) Analyse des infiniment petits pour l’intelligence des lignes Courbes, ParisGoogle Scholar
  9. 9.
    Maxwell JC (1871) Theory of heat. Longmans, Green&Co, London, pp 165–168Google Scholar
  10. 10.
    Rutgers AJ (1934) Note on supraconductivity I. Physica 2:1055–1058CrossRefGoogle Scholar
  11. 11.
    Landau LD (1937) On the theory of phase transitions. Zh Eksp Teor Fiz 7:19–32Google Scholar
  12. 12.
    Onsager L (1944) Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev 65:117–149CrossRefGoogle Scholar
  13. 13.
    Pippard AB (1957) Elements of classical thermodynamics. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Tisza L (1951) On the general theory of phase transitions. In Smoluchowski R et al (eds) Phase transitions in solids (Symposium at Cornell University, August, 1948). Wiley, New York, pp 1–37Google Scholar
  15. 15.
    Callen HB (1960) Thermodynamics. Wiley, New YorkGoogle Scholar
  16. 16.
    Matolcsi T (1996) On the classification of phase transitions. Z Angew Math Phys 47:837–857CrossRefGoogle Scholar
  17. 17.
    Holba P (2015) Ehrenfest equations for calorimetry and dilatometry. J Thermal Anal Cal 120(1):175–181CrossRefGoogle Scholar
  18. 18.
    Holba P (1992) Thermodynamics of partially open systems. Czech J Phys B 42:549–575CrossRefGoogle Scholar
  19. 19.
    Korzhinskiy DS (1957) Fizikochimikheskie osnovy analiza paragenesisov mineralov; Izd. Akad. nauk SSSR, Moscow: 184. English translation: (1959) Physicochemical basis of the analysis of the paragenesis of minerals, Consultants Bureau, New YorkGoogle Scholar
  20. 20.
    Holba P, Sedmidubský D (2013) Heat capacity equations for nonstoichiometric solids. J Therm Anal Calorim 113:239–245CrossRefGoogle Scholar
  21. 21.
    Sedmidubský D, Holba P (2015) Material properties of nonstoichiometric solids. J Therm Anal Calorim 1120:183–188CrossRefGoogle Scholar
  22. 22.
    Holba P, Sedmidubský D (2013) Crystal defects and nonstoichiometry contributions to heat capacity of solids, Chapter 3 in book: Thermal analysis of micro- nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics, Ed. J. Šesták & P. Šimon, Springer, pp 53–74Google Scholar
  23. 23.
    Nevřiva M, Kraus H, Sedmidubský D (1996) Phase equilibria study in the partially open Cu-(O) and Me-Cu-(O) (Me = Sr, Bi, Ba) systems. Thermochim Acta 282:205–224Google Scholar
  24. 24.
    Sedmidubský D, Strejc A, Nevřiva M, Leitner J, Martin C (2003) Structural and phase relations in the Sr-Mn-O System. Solid State Phenom 90–91(2003):427–432CrossRefGoogle Scholar
  25. 25.
    Darken LS, Gurry RW (1945) The system iron-oxygen. I. The wüstite field and related equilibria. J Am Chem Soc 67:1378–1412. Darken LS, Gurry RW (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:789–816Google Scholar
  26. 26.
    Tretyakov YuD (1967) Termodinamika ferritov (in Russian). Izd. Chimiya, Leningradsk. Otdel. Moscow 1967.] Tretyakov YuD (1974) Chimiya nestechiometricheskikh okislov (in Russian). Izd. Moscow Univ 1974Google Scholar
  27. 27.
    Kellogg HH, Basu SK (1960) Thermodynamic properties of the system lead-sulfur-oxygen to 1100°K. Trans Metall Soc AIME 218:70–81Google Scholar
  28. 28.
    Clairaut AC (1743) Théorie de la figure de la terre, tirée des principes de l’hydrostatique, 2nd edn. (1808), Courcier, ParisGoogle Scholar
  29. 29.
    Sedmidubský D, Šesták J (2017) On the history and recent applications of hyperfree energy describing thermodynamics of mobile components in partly open ceramic systems - in memory of D.S. Korzhinskiĭ and P. Holba, Ceramics-Silikáty, submittedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.New Technologies Research CentreUniversity of West BohemiaPragueCzech Republic
  2. 2.Department of Inorganic ChemistryUniversity of Chemistry and Technology PraguePilsen-PragueCzech Republic

Personalised recommendations