Advertisement

What Is the Physical and Operational Meaning of Temperature and Its Self-Measurability During Unsteady Thermal Processes Within Thermodynamic Concepts?

  • Miroslav Holeček
  • Jiří J. Mareš
  • Jaroslav ŠestákEmail author
  • Pavel Hubík
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

Historical maturity of terms temperatura and thermoscope is sketched. Problem of temperature definition and observation (measurement) is studied in detail. Temperature is a typical averaged quantity clear-cut under equilibrium only. A self-measurability condition is implied, and some consequences are outlined. Physical and operational meaning of temperature and its self-measurability during unsteady thermal processes is analysed. Particular case of thermal analysis often idealized under constant temperature changes is thermodynamically examined. For extreme temperature changes as that during quenching, a novel term “tempericity” is proposed. Branched view to the spheres of alternative thermodynamics is shown locating thermal analysis as thermotics and quenching as thermokinetics. Non-equilibrium thermodynamics under a non-constant rate of temperature changes is analysed. Practical aspects of non-equilibrium temperatures due to heat inertia and thermal gradients are specified including cases of modulated experiments. Textbook thermodynamic description under the perceptible impact of second temperature derivatives becomes ambiguous and associated tabular values are unclear. Thermotics, thermokinetics, and the validity of the first and second thermodynamic laws are discussed bringing another dimension of the thermodynamic legacy. The concept of equivalence of work and heat is questioned. The chapter contains 126 references.

Keywords

Heat Flux Active Part Thermal Physic Mechanical Equivalent Heat Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was developed at the Join Research Laboratory of the Institute of Physics CAS, v.v.i., and the New Technologies Centre (NTC) of the University of West Bohemia in Pilsen and supported by the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088 that is cofunded from the ERDF as a part of the MEYS—Ministry of Education, Youth and Sports OP RDI Program, and, in the follow-up sustainability stage, supported through the CENTEM PLUS LO 1402.

References

  1. 1.
    Truesdell C (1969) Rational thermodynamics. McGraw-Hill, New York, p 6Google Scholar
  2. 2.
    Tolman RC (1938) The principles of statistical mechanics. Oxford University Press, London, pp 93 and 655; and Terletskii YP (1966) Statistical physics, Izd. Vysshaya Shkola, Moscow, p 47 (in Russian); and Kittel C, Kroemer H (1980) Thermal physics, 2nd edn. Freeman Company, pp 391–397Google Scholar
  3. 3.
    Carathéodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Ann 67:355CrossRefGoogle Scholar
  4. 4.
    Müller I (2007) A history of thermodynamics. Springer, BerlinGoogle Scholar
  5. 5.
    Proks I (1991) Evaluation of the knowledge of phase equilibrium. In: Chvoj Z, Šesták J, Tříska A (eds) Kinetic phase diagrams: nonequilibrium phase transitions. Elsevier, Amsterdam, pp 1–49Google Scholar
  6. 6.
    Šesták J, Mackenzie RC (2001) The heat/fire concept and its journey from prehistoric time into the third millennium. J Therm Anal Calorim 64:129–147CrossRefGoogle Scholar
  7. 7.
    Barnett MK (1956) The development of thermometry and the temperature concept. Osiris 12:269–341CrossRefGoogle Scholar
  8. 8.
    Cardillo P (2002) A history of thermochemistry through the tribulations of its development. J Therm Anal Calorim 72:7CrossRefGoogle Scholar
  9. 9.
    Šesták J, Mareš JJ (2007) From caloric to stathmograph and polarography. J Therm Anal Calorim 88:763CrossRefGoogle Scholar
  10. 10.
    Šesták J (2013) Thermal science and analysis: terms connotation, history, development, and the role of personalities. J Therm Anal Calorim 113:1049–1054CrossRefGoogle Scholar
  11. 11.
    Šesták J (2011) Some historical features focused back to the process of European education revealing some important scientists, roots of thermal analysis and the origin of glass research. In: Šesták J, Holeček M, Málek J (eds) Thermodynamic, structural and behavioural aspects of materials accentuating noncrystalline states. ZČU-OPS, Pilsen, pp 30–58Google Scholar
  12. 12.
    Šesták J, Hubík P, Mareš JJ (2011) Historical roots and development of thermal analysis and calorimetry. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. Springer, London, pp 347–370Google Scholar
  13. 13.
    Mackenzie R, Proks I (1985) Comenius and Black as progenitors of thermal analysis. Thermochim Acta 92:3–12CrossRefGoogle Scholar
  14. 14.
    Proks I (2012) The whole is simpler than its parts: chapters from the history of exact sciences. Veda-Slovak Academy of Sciences, Bratislava (book in Slovak)Google Scholar
  15. 15.
    Mareš JJ (2000) On the development of temperature concept. J Thermal Anal Calor 60:1081CrossRefGoogle Scholar
  16. 16.
    Mareš JJ (2011) Phenomenological meaning of temperature. In: J. Šesták, Holeček M, Málek J (eds) Thermodynamic, structural and behavioural aspects of materials accentuating noncrystalline states ZČU-OPS, Pilsen, pp 60–78. ISBN 978-80-87269-20-6Google Scholar
  17. 17.
    Mareš JJ (2011) Hotness manifold, phenomenological temperature and other related concepts of thermal physics. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. London, Springer, pp 327–345Google Scholar
  18. 18.
    Mareš JJ (2015) Do we know what temperature is? J Thermal Anal Calorim 120:223–230CrossRefGoogle Scholar
  19. 19.
    Mach E (1896) Die Prinzipien der Wärmelehre. Verlag von J.A. Barth, LeipzigGoogle Scholar
  20. 20.
    Huntington EV (1917) The continuum and other types of serial order. Harvard University Press, New YorkGoogle Scholar
  21. 21.
    Epstein PS (1954) Textbook of thermodynamics. Wiley, New YorkGoogle Scholar
  22. 22.
    Boyer CB (1942) Early principles in the calibration of thermometers. Am J Phys 10:176–180CrossRefGoogle Scholar
  23. 23.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2008) Phenomenological approach to the caloric theory of heat. Thermochim Acta 474:16–24CrossRefGoogle Scholar
  24. 24.
    Šesták J, Mareš JJ, Hubík P, Proks I (2009) Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in alternative thermodynamics. J Thermal Anal Calor 97:679–683CrossRefGoogle Scholar
  25. 25.
    Maxwell JC (1871) Theory of heat. Longmans Green, LondonGoogle Scholar
  26. 26.
    Van der Waals J, Kohnstamm P (1927) Lehrbuch der Thermostatik. Verlag von J.A. Barth, LeipzigGoogle Scholar
  27. 27.
    Landsberg PT (1956) Foundations of thermodynamics. Rev Mod Phys 28:363–392CrossRefGoogle Scholar
  28. 28.
    Callen HB (1960) Thermodynamics: an introduction to thermostatics. Wiley, New YorkGoogle Scholar
  29. 29.
    Tribus M (1961) Thermostatics and thermodynamics: an introduction to energy, information and states of matter. Nostrand, New YorkGoogle Scholar
  30. 30.
    McGee TD (1988) Principles and methods of temperature measurement. Wiley, New YorkGoogle Scholar
  31. 31.
    Sears FW (1963) A simplification of Carathéodory’s treatment of thermodynamics. Am J Phys 31:747–752CrossRefGoogle Scholar
  32. 32.
    Turner LA (1963) Temperature and Carathéodory’s treatment of thermodynamics. J Chem Phys 38:1163–1167CrossRefGoogle Scholar
  33. 33.
    Pogliani L, Berberan-Santos MN (2000) Carathéodory and the axiomatic thermodynamics. J Mathemat Chem 28:1–3CrossRefGoogle Scholar
  34. 34.
    Gibbs JW (1902) Elementary principles in statistical mechanics. Yale University Press, New HavenGoogle Scholar
  35. 35.
    Quinn STJ (1983) Temperature. Academic Press, London. ISBN 0-12-569680-9Google Scholar
  36. 36.
  37. 37.
    Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179–191; and Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: the device. Thermochim Acta 505:14–21Google Scholar
  38. 38.
    Adamovsky AS, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63; and Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instr 78:073902(10)Google Scholar
  39. 39.
    Šesták J (2005) Science of heat and thermophysical studies: a generalized approaches to thermal analysis. Elsevier, Amsterdam, pp 379–401Google Scholar
  40. 40.
    Holeček M (2009) Diffusion and the self-measurability. Appl Comput Mech 3:51–62Google Scholar
  41. 41.
    Muschik W (1977) Empirical foundation and axiomatic treatment of non-equilibrium temperature. Arch Rat Mech Anal 66:379–401CrossRefGoogle Scholar
  42. 42.
    Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66:1937–2013CrossRefGoogle Scholar
  43. 43.
    Holeček M (2015) Self-measurability in rapid thermal processes. J Thermal Anal Calor 120:217–221CrossRefGoogle Scholar
  44. 44.
    Voldřich J (2002) Averaging over N-dimensional balls and Cauchy problem for equations of mathematical physics. J Math Anal Appl 272:582CrossRefGoogle Scholar
  45. 45.
    Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C R Hebd Seances Acad Sci 247:431–433Google Scholar
  46. 46.
    Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41CrossRefGoogle Scholar
  47. 47.
    Tzou DY (1996) Macro- to microscale heat transfer. Taylor & Francis, WashingtonGoogle Scholar
  48. 48.
    Volz S (ed) (2007) Microscale and nanoscale heat transfer. Springer, HeidelbergGoogle Scholar
  49. 49.
    Vilar JMG, Rubí JM (2001) Thermodynamics “beyond” local equilibrium. Proc Natl Acad Sci USA 98:11081–11084CrossRefGoogle Scholar
  50. 50.
    Holeček M (1992) Heat conduction equations as the continuum limits of the scale dependent hydrodynamics theory. Phys A 183:236–246CrossRefGoogle Scholar
  51. 51.
    Thomson W (Lord Kelvin of Largs) (1848) On the absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Phil Mag 33:313Google Scholar
  52. 52.
    Callendar HL (1911) The caloric theory of heat and Carnot’s principle. Proc Phys Soc London 23:153CrossRefGoogle Scholar
  53. 53.
    Zemansky MV (1968) Heat and thermodynamics. McGraw-Hill, Kogakusha, TokyoGoogle Scholar
  54. 54.
    Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227CrossRefGoogle Scholar
  55. 55.
    Šesták J (1984) Thermophysical properties of solids: theoretical thermal analysis. Elsevier, Amsterdam. ISBN 0 444 99653. Czech original by Academia, Praha 1982 and Russian translation by Mir, Moscow 1988Google Scholar
  56. 56.
    Šesták J (2015) Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Thermal Anal Calor 120:129–137CrossRefGoogle Scholar
  57. 57.
    Holba P (2016) Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi’s thermal science classification with regards to methods of thermal analysis. J Therm Anal Calorim. doi: 10.1007/s10973-016-5659-4; and (2017) Temperature dependence of activation energy of endothermic processes and related imperfections of non-isothermal kinetic evaluations. J Therm Anal Calorim doi:  10.1007/s10973-017-6088-8
  58. 58.
    Lebon G, Jou D, Casas-Vásquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinGoogle Scholar
  59. 59.
    Šesták J (2016) Measuring “hotness”, should the sensor’s readings for rapid temperature changes be named “tempericity”? J Therm Anal Calorim 125:991–999CrossRefGoogle Scholar
  60. 60.
    Sertorio L (1991) Thermodynamics of complex systems. World Scientific, SingaporeGoogle Scholar
  61. 61.
    Jou D, Casas-Vazquez J, Lebon G (1993) Extended irreversible thermodynamics. Springer, BerlinCrossRefGoogle Scholar
  62. 62.
    Adamovsky SA, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7; and Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film-chip nanocalorimetry. Thermochim Acta 432:177–185Google Scholar
  63. 63.
    Šesták J (2004) Thermodynamics and society—laws versus feelings. Chapter 18 in his book “Heat, Thermal Analysis and Society”. Nucleus, Hradec Kralove. ISBN 8-86225-54-2, pp 298–302Google Scholar
  64. 64.
    Šesták J (2005) Thermodynamics, econophysics and societal behavior. Chapter 8 in his book “Science of heat and thermophysical studies: a generalized approach to thermal analysis”. Elsevier, Amsterdam. ISBN 444 51954 8, pp 230–246Google Scholar
  65. 65.
    Golding B (1839) Two chapters on thermotics, in book “Elements of natural philosophy: the study of the physical sciences”. John Churchill, LondonGoogle Scholar
  66. 66.
    Tykodi RJ (1967) Thermodynamics of steady state. MacMillan, New YorkGoogle Scholar
  67. 67.
    Brønsted J (1955) Principles and problems in energetics. Interscience, New YorkGoogle Scholar
  68. 68.
    Tykodi RJ (1968) Correspondence: thermodynamics—thermotics as the name of the game. Ind Eng Chem 60:22CrossRefGoogle Scholar
  69. 69.
    Parker PM (ed) (2012) Thermal analysis: Webster’s timeline history, 1909–2007. Icon Group InternationalGoogle Scholar
  70. 70.
    Šesták J, Chvoj Z (1987) Thermodynamics of kinetic phase diagrams. J Thermal Anal 32:325–333CrossRefGoogle Scholar
  71. 71.
    Chvoj Z, Šesták J, Tříska A (eds) (1991) Kinetic phase diagrams: non-equilibrium phase transitions. Elsevier, Amsterdam. ISBN 0-444-88513-7Google Scholar
  72. 72.
    Šesták J, Queiroz CA, Mareš JJ, Holeček M (2011) Some aspects of quenching, vitrification, amorphization, disordering and the extent of nano-crystallinity. In: Šesták J, Mareš JJ, Hubík P (eds) Chapter 4 in Glassy, amorphous and nano-crystalline materials. Springer, Berlin, Heidelberg, pp 59–76Google Scholar
  73. 73.
    Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Thermal Anal Calorim 113:1633–1643CrossRefGoogle Scholar
  74. 74.
    Holba P, Šesták J, Sedmidubský D (2013) Heat transfer and phase transition at DTA experiments. In: Šesták J, Šimon P (eds) Chapter 5 inThermal analysis of micro-, nano- and non-crystalline materials. Springer, Berlin, pp 99–134Google Scholar
  75. 75.
    Smyth HT (1951) Temperature distribution during mineral inversion and its significance in DTA. J Amer Cer Soc 34:221–224CrossRefGoogle Scholar
  76. 76.
    Kornilov VV, Makarov BI (1963) Measurement of rapidly changing temperatures of conducting solid bodies by means of thermocouples. Measur Tech 6:849–851CrossRefGoogle Scholar
  77. 77.
    Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C (2007) Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta 461:96–106; and Salinga M, Carria E, Kaldenbach A, Bornhöfft M, Benke J, Mayer J, Wuttig M (2013) Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat Comm 4:2371Google Scholar
  78. 78.
    Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207; and Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217; and Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217Google Scholar
  79. 79.
    Mareš JJ, Šesták J, Hubík P (2011) Transport constitutive relations, quantum diffusion and periodic reactions. In: Šesták J, Mareš JJ, Hubík P (eds) Chapter 14 in: Glassy, amorphous and nano-crystalline materials Springer, Berlin, pp 227–244Google Scholar
  80. 80.
    Lerchner JA, Wolf G, Wolf J (1999) Recent developments in integrated circuit calorimetry J Therm Anal Calorim 57:241; and Merzlyakov M (2003) Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta 403:65Google Scholar
  81. 81.
    Lyon RE, Safronova N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample centred response in non-isothermal analysis. Thermochim Acta 545:82–89CrossRefGoogle Scholar
  82. 82.
    Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M (2014) Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. ThermochimActa 589:37–46CrossRefGoogle Scholar
  83. 83.
    Fourier JBJ (1822) Théorie analytique de la chaleur. Paris (English transl.: The Analytical Theory of Heat). Dover Publications, Mineola, New York 2003Google Scholar
  84. 84.
    Fuchs HU (2010) The dynamics of heat. Springer, New YorkCrossRefGoogle Scholar
  85. 85.
    Fick AE (1855) Über diffusion. Ann Phys Chem von Poggendorff 94:59CrossRefGoogle Scholar
  86. 86.
    Ohm GS (1827) Die galvanische Kette, mathematisch bearbeitet. J. G. F. Kniestdt for T. H. Riemann, BerlinCrossRefGoogle Scholar
  87. 87.
    Kirchhoff G (1849) Über eine Ableitung der Ohm’schen Gesetze, welche sich an die Theorie der Elektrostatik anschliest. Ann Phys 154:506–513CrossRefGoogle Scholar
  88. 88.
    Onsager L (1931) Reciprocal relations in irreversible processes I and II. Phys Rev 37:405–426; Phys Rev 38:2265–2279Google Scholar
  89. 89.
    Miller DG (1960) Thermodynamics of irreversible processes: experimental verification of the Onsager reciprocal relations. Chem Rev 60:15–37CrossRefGoogle Scholar
  90. 90.
    Stöckel H (1983) Linear and nonlinear generalizations of Onsager’s reciprocity relations treatment of an example of chemical reaction kinetics. Fortsch Physik—Progr Phys 31:165–184CrossRefGoogle Scholar
  91. 91.
    Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Thermal Anal Calor 121:303–307CrossRefGoogle Scholar
  92. 92.
    Schultze D (1969) Differential thermo analyse. VEB Deutscher Verlag, Berlin; and Polish translation (1974) Różnicowa analiza termiczna. PWN, WarsawGoogle Scholar
  93. 93.
    Hemminger W, Höhne GWH (1979) Grundlagen der Kalorimetrie. Verlag Chemie, Weinheim; and (1984) Calorimetry: fundamentals and practice. Verlag Chemie, WeinheimGoogle Scholar
  94. 94.
    Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes. Pergamon Press, Oxford, pp 109–110Google Scholar
  95. 95.
    Šesták J (2005) Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, AmsterdamGoogle Scholar
  96. 96.
    Boerio-Goates J, Callen JE (1992) Differential thermal methods. In: Rossiter BW, Beatzold RC (eds) Chapter 8 in Determination of thermodynamic properties. Wiley, New York, pp 621–718Google Scholar
  97. 97.
    Kittl JA, Reitano R, Aziz MJ, Brunco DP, Thompson MO (1993) Time-resolved temperature measurements during rapid solidification of Si–As alloys induced by pulsed-laser melting. J Appl Phys 73:3725–3733CrossRefGoogle Scholar
  98. 98.
    Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(3-caprolactone). Polymer 52:1983–1997CrossRefGoogle Scholar
  99. 99.
    Flynn JH (1970) An analytical evaluation of DSC observing metastability. In: Menis O (ed) Status of thermal analysis. Special NBS publication no. 338, p 119Google Scholar
  100. 100.
    Newton I (originally anonymously) (1701) Scale graduum caloris. Calorum descriptiones & signa. Philos Trans 22:824–29Google Scholar
  101. 101.
    Grigull U (1984) Newton’s temperature scale and the law of cooling. Wärme Stoffübertragung 18:195–199CrossRefGoogle Scholar
  102. 102.
    Gray AP (1968) Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF (eds) Compendium: analytical calorimetry, vol. 1. Plenum Press, New York, pp 209–213Google Scholar
  103. 103.
    Farjas J, Roura P (2014) Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformations. Thermochim Acta 508:51–5894CrossRefGoogle Scholar
  104. 104.
    Holba P, Šesták J (2014) Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem 40:486–49Google Scholar
  105. 105.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  106. 106.
    Svoboda R (2015) Glass transition kinetics measured by fast scanning calorimetry: effect of thermal gradients. J Therm Anal Calorim 122:985–995CrossRefGoogle Scholar
  107. 107.
    Svoboda H, Šesták J (1974) A new approach to DTA calibration by predetermined amount of Joule heat via rectangular pulses. In: Buzas I (ed) Thermal analysis, proceedings of the 4th ICTA, Akademia Kiado, Budapest, pp 726–731Google Scholar
  108. 108.
    Holba P, Nevřiva M, Šesták J (1978) Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223–231CrossRefGoogle Scholar
  109. 109.
    Kirchner R, Seidel K, Wolf G (1998) Electrical calibration and testing of calorimeters with simulated, time-variable reaction power. Thermochim Acta 310:19–24Google Scholar
  110. 110.
    Barale S, Vincent L, Sauder G, Sbirrazzuoli N (2015) Deconvolution of calorimeter response from electrical signals for extracting kinetic data. Thermochim Acta 615:30–37CrossRefGoogle Scholar
  111. 111.
    Mouchina E, Kaisersberger E (2009) Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta 492:101–109CrossRefGoogle Scholar
  112. 112.
    Kubičár Ľ (1990) Pulse method of measuring basic thermophysical parameters. Elsevier, AmsterdamGoogle Scholar
  113. 113.
    Blumm J, Opfermann J (2002) Improvement of the mathematical modeling of flash measurements. High Temp—High Pres 34:515Google Scholar
  114. 114.
    Šesták J, Holba P (2017) Quo Vadis of nonisothermal kinetics (in the course of preparation); and (2016) Piloyan method to determine the activation energy from DTA is defective in addition to other methods which do not take into account the thermal inertia. J Anal Bioanal Tech 7:331 (open access doi: 10.4172/2155-9872.1000331)
  115. 115.
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions (overview No. 152). Acta Mater 62:1–48; and Kaptay G (2016) Modeling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J Mater Sci 51:1738–1755Google Scholar
  116. 116.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2010) Relativistic transformation of temperature and Mosengeil-Ott’s antinomy. Physica E 42:484–487CrossRefGoogle Scholar
  117. 117.
    Job G, Lankau T (2003) How harmful is the first law? Ann Acad NY Sci 988:171–181CrossRefGoogle Scholar
  118. 118.
    Shamos MH (1953) Great experiments in physics. Dover Publications Inc, New YorkGoogle Scholar
  119. 119.
    Joule JP (1850) On the mechanical equivalent of heat. Phil Trans Roy Soc London 140:61–82CrossRefGoogle Scholar
  120. 120.
    Smith CW (1976) Faraday as referee of Joule’s royal society paper “On the mechanical equivalent of heat”. Isis 67:444–449CrossRefGoogle Scholar
  121. 121.
    Carnot S (1824) Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier, Paris; Germ. Transl. (1909) Ostwald’s Klassiker 37. Engelmann, LeipzigGoogle Scholar
  122. 122.
    Mayer JR (1842) Bemerkungen über die Kräfte der unbelebten Natur. Ann Chem Pharm 42:233–240; Reprint and English translation (1929) Isis 13:18–44Google Scholar
  123. 123.
    Lunn AC (1919) The measurement of heat and the scope of Carnot’s principle. Phys Rev 14:1–19CrossRefGoogle Scholar
  124. 124.
    Mach E (1923) Populär-Wissenschaftliche Vorlesungen. Verlag J.A. Barth, LeipzigGoogle Scholar
  125. 125.
    Blundell SJ, Blundell KM (2006) Concepts in thermal physics. Oxford University Press, New YorkGoogle Scholar
  126. 126.
    Wang L-S (2017) The function of heat: thermodynamics as a predicative entropic theory of heat. Springer, Book in the course of preparation; and (2017) The second law: from Carnot to Thomson-Clausius, to the theory of exergy, and to the entropy-growth potential principle. Entropy 57:2–19; doi:  10.3390/e19020057

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Miroslav Holeček
    • 1
  • Jiří J. Mareš
    • 2
  • Jaroslav Šesták
    • 1
    Email author
  • Pavel Hubík
    • 2
  1. 1.New Technologies Research Centre (NTC-ZČU)University of West BohemiaPilsenCzech Republic
  2. 2.Division of Solid-State PhysicsInstitute of Physics, Czech Academy of SciencesPragueCzech Republic

Personalised recommendations