Skip to main content

Professional Value of Scientific Papers and Their Citation Responding

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Abstract

In the course of the last thirty years, science enjoys a remarkable quantitative boom. For example, the total number of substances, registered in the Chemical Abstracts Service Registry File (CAS RF) at the end of the year 1985, was about 8 millions while at the end of the year 2015 it reached up to 104 millions. But, still more and more behind this quantitative boom of science are some of its qualitative aspects. So, e.g., the x–y–z coordinates of atoms in molecules are presently known for no more than 1 million of substances. For the majority of substances registered in CAS RF, we do not know much on their properties, how they react with other substances and to what purpose they could serve. Gmelin Institute for Inorganic Chemistry and Beilstein Institute for Organic Chemistry, which systematically gathered and extensively published such information since the nineteenth century, were canceled in 1997 (Gmelin) and 1998 (Beilstein). The number of scientific papers annually published increases, but the value of information they bring falls. The growth of sophisticated ‘push-and-button’ apparatuses allows easier preparation of publications while facilitating ready-to-publish data. Articles can thus be compiled by mere combination of different measurements usually without idea what it all is about and to what end this may serve. Driving force for the production of ever growing number of scientific papers is the need of authors to be distinguished in order to be well considered in seeing financial support. The money and fame are distributed to scientists according to their publication and citation scores. While the number of publications is clearly a quantitative criterion, much hopes have been placed on the citation, which promised to serve well as an adequate measure of the genuine scientific value, i.e., of quality of the scientific work. That, and why these hopes were not accomplished, is discussed in detail in our contribution. Special case of Journal of Thermal Analysis and Calorimetry is discussed in more particulars.

Quo usque tandem, scientometrics? or voice in the desert

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Šesták J (2012) Citation records and some forgotten anniversaries in thermal analysis. J Thermal Anal Calorim 108:511–518; and Šesták J, Fiala J, Gavrichev SK (2017) Evaluation of the professional worth of scientific papers, their citation responding and the publication authority of Journal of Thermal Analysis and Calorimetry. J Thermal Anal Calorim doi:10.1007/s10973-017-6178-7

  2. http://en.wikiquote.org/wiki/Michael Faraday

  3. http://en.wikipedia.org/wiki/Publish or parish

  4. Garfield E (1996) What is the primordial reference for the phrase ‘Publish or parish’? Scientist 10:11

    Google Scholar 

  5. Fiala J, Šesták J (2000) Databases in material science: contemporary state and future. J Thermal Anal Calorim 60:1101–1110

    Article  CAS  Google Scholar 

  6. Fiala J (1987) Information flood: fiction and reality. Thermochim Acta 110:11–22

    Article  CAS  Google Scholar 

  7. Burnham JF (2006) SCOPUS database: a review. Biomed Digit Libr 3:1

    Article  Google Scholar 

  8. Seglen PO (1997) Why the impact factor of journals should not be used for evaluating research. Br Med J 314:498–502

    Article  CAS  Google Scholar 

  9. Adam D (2002) Citation analysis: the counting house. Nature 415:726–729

    Article  CAS  Google Scholar 

  10. Scully C, Lodge H (2005) Impact factors and their significance; overrated or misused? Br Dent J 198:391–393

    Article  CAS  Google Scholar 

  11. Lehmann S, Jackson AD, Lautrup BE (2006) Measures for measures. Nature 444:1003–1004

    Article  CAS  Google Scholar 

  12. Editorial (2008) Papers about papers. Nature Nanotechnol 3:633

    Google Scholar 

  13. Frey BS, Rost K (2010) Do rankings reflect research quality? J Appl Ecol 13:1–38

    Google Scholar 

  14. Editorial (2013) Beware the impact factor. Nat Mater 12:89

    Google Scholar 

  15. Editorial (2003) Deciphering impact factors. Nat Neurosci 6:783

    Google Scholar 

  16. Ylä-Herttuala S (2015) From the impact factor to DORA and the scientific content of articles. Mol Ther 23:609

    Article  Google Scholar 

  17. http://scholarlyoa.com/individual-journals/ and Beall J, Criteria for determining predatory open-access publishers. http://scholarlyva.com/

  18. Garfield E (1955) A new dimension in documentation through association of ideas. Science 122:108–111

    Article  CAS  Google Scholar 

  19. Johnson AA, Davis RB (1975) The research productivity of academic materials scientists. J Met 27(6):28–29

    Google Scholar 

  20. Roy R (1976) Comments on citation study of materials science departments. J Met 28:29–30

    Google Scholar 

  21. Mannchen W (1965) Einführung in die Thermodynamik der Mischphasen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  22. Garfiel E (1979) Citation indexing. Wiley, New York

    Google Scholar 

  23. Garfield E (1979) Perspective on citation analysis of scientists, Chap 10. In Garfield E (ed) Citation indexing. Wiley, New York

    Google Scholar 

  24. Cronin B, Atkins HB (eds) (2000) The web of knowledge. Information Today, Medford

    Google Scholar 

  25. Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102:16569–16572

    Article  CAS  Google Scholar 

  26. Eghe L (2006) Theory and practise of the G-index. Scientometrics 69:131–152

    Article  Google Scholar 

  27. Bornmann L, Mutz R, Hug SE, Daniel H-D (2011) A multilevel meta-analysis of studies reporting correlations between the H-index and 37 different H-index variants. Informetrics 5:346–359

    Article  Google Scholar 

  28. Goethe JW (1870) Faust a tragedy, translated by Bayard Taylor, Part I, Scene I. Night, Houghton Mifflin Company, Boston and New York

    Google Scholar 

  29. Ketcham CM (2007) Predicting impact factor one year in advance. Lab Invest 87:520–526

    Article  Google Scholar 

  30. Garfield E (1999) Journal impact factor: a brief review. Can Med Assoc J 161:979–980

    CAS  Google Scholar 

  31. The Gospel according to St. John 8:12

    Google Scholar 

  32. The Gospel according to St. Matthew 12:25

    Google Scholar 

  33. The Book of the prophet Jeremiah 10:23

    Google Scholar 

  34. Kraus I (2015) Ženy v dějinách matematiky, fyziky a astronomie (Ladies in the history of mathematics and physics), Česká technika – nakladatelství ČVUT, Praha

    Google Scholar 

  35. Kraus I (1997) Wilhelm Conrad Röntgen, dědic šťastné náhody (Wilhelm Conrad Röntgen: the heritage of lucky coincidence), Prometheus, Praha

    Google Scholar 

  36. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal 2:301–324

    Google Scholar 

  37. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Google Scholar 

  38. Šesták J (2014) Is the original Kissinger equation obsolete today—not obsolete the entire non-isothermal kinetics? J Thermal Anal Calorim 117:1173–1177; and (2014) Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Physics Chem 40:486–449

    Google Scholar 

  39. Augis JA, Bennet JE (1978) Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method. J Thermal Anal 13:283–292

    Article  CAS  Google Scholar 

  40. Reading M, Elliot D, Hill VL (1993) A new approach to the calorimetric investigations of physical and chemical transitions. J Thermal Anal Calor 40:949–955

    Article  CAS  Google Scholar 

  41. Šesták J, Berggren G (1971) Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 3:1–12

    Article  Google Scholar 

  42. Brun M, Lallemand A, Quinson JF, Eyraud C (1977) New method for simultaneous determination of size and shape of pores—thermoporometry. Thermochim Acta 21:59–88

    Article  CAS  Google Scholar 

  43. Wunderlich B, Jin YM, Boller Y (1994) A mathematical description of DSC based on periodic temperature modulations. Thermochim Acta 238:277–293

    Article  CAS  Google Scholar 

  44. Vyazovkin S, Burnham AK, Criado JN, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–19)

    Google Scholar 

  45. Newton I (1701) Scale graduum Caloris. Calorum Descriptiones & Signa. Philosophical Trans 22:824–829

    Google Scholar 

  46. Tian A (1933) Recherches sue la calorimétrie. Généralisation de la méthode de compensation électrique: Microcalorimétrie. J de Chimie-Physiq 30:665–708

    CAS  Google Scholar 

  47. Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Thermal Anal Calor 121:303–307

    Article  CAS  Google Scholar 

  48. Davidovits J (1989) Geopolymers and geopolymeric materials. J Thermal Anal 35:429–441; and (1991) Geopolymers: inorganic polymeric materials. J Thermal Anal 37:1633–1656; and Šesták J, Foller B (2012) Some aspects of composite inorganic polysialates. J Thermal Anal Calor 109:1–5

    Google Scholar 

  49. Davidovits J (2015) Geopolymer Chemistry and Applications. Institut Géopolymère, Saint-Quentin (previously 2008 and 2011). ISBN 9782951482098

    Google Scholar 

  50. Šesták J, Chvoj Z (1987) Thermodynamics of kinetic phase diagrams. J Thermal Anal 32:325–333; and (1991) Nonequilibrium kinetic phase diagrams in the PbCl2-AgCl eutectic system. J Therm Anal 43:439–448

    Google Scholar 

  51. Chvoj Z, Šesták J, Tříska A (eds) (1991) Kinetic phase diagrams: non-equilibrium phase transitions. Elsevier, Amsterdam

    Google Scholar 

  52. Mimkes J (1995) Binary alloys as a model for the multicultural society. J Thermal Anal 43:521; and (2000) Society as many particle system. J Thermal Anal Calor 60:1055

    Google Scholar 

  53. Richmond P, Mimkes J, Hutzler S (2013) Econophysics and physical economics. Oxford University Press, Oxford; and Šesták J (2005) Thermodynamics, econophysics and societal behavior, Chap 8. In: Šesták J (ed) Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam

    Google Scholar 

  54. Šesták J, Mareš JJ, Hubík P (eds) (2011) Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties, vol 8. Springer, Berlin, Heidelberg. ISBN 978-90-481-2881-5

    Google Scholar 

  55. Šesták J, Šimon P (eds) (2013) Thermal analysis of micro-, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics, vol 9. Springer, Berlin, Heidelberg. ISBN 978-90-481-3149-5

    Google Scholar 

  56. Fiala J (1972) Algebraic conception of the powder diffraction identification system. J Phys D: Appl Phys 5:1874–1876; and (1976) Optimization of powder-diffraction identification. J Appl Crystallogr 9:429–432

    Google Scholar 

  57. Fiala J (1980) Powder diffraction analysis of a three-component sample. Anal Chem 52:1300–1304

    Article  CAS  Google Scholar 

  58. Fiala J (1982) A new method for powder diffraction phase analysis. Cryst Res Technol 17:643–650

    Article  CAS  Google Scholar 

  59. Fiala J, Říha J (2014) X-ray diffraction analysis of materials. Hutnické listy 67:2–7

    Google Scholar 

  60. Malinowski ER, Howery DG (1980) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  61. Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgements

The present work was developed at the Join Research Laboratory of the Institute of Physics CAS and the New Technologies Centre of the University of West Bohemia in Pilzen (the CENTEM project, Reg. No. CZ.1.05/2.1.00/03.0088 that is cofunded from the ERDF as a part of the MEYS—Ministry of Education, Youth and Sports OP RDI Program and, in the follow-up sustainability stage supported through the CENTEM PLUS LO 1402). The paper is based on a long-lasting close letter friendship of J. Fiala with E. Garfield. Deep thanks are due to the shared efforts by J. Czarnecki (formerly with Chan, USA), I. Kraus Czech Technical University in Prague), J. Leitner (Institute of Chemical Technology in Prague), J.J. Mareš, P. Hubík, D. Kindl, V. Špička (Institute of Physics), P. Holba+, M. Holeček, P. Martinec (Westbohemian University), M. Liška (Vitrum Laugaricio, Dubček University in Trenčín), J. Málek (University of Pardubice), A. Kállay-Menyhárd, J. Simon (Budapest University of Technology and Economics), and P. Šimon (President of the Slovak Chemical Society, Technical University in Bratislava). Cartoons (adapted) by courtesy of M. Barták and J. Jurčák.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Fiala .

Editor information

Editors and Affiliations

Appendix: Factor Analysis

Appendix: Factor Analysis

Spectra (pattern vectors of identification features) \( \vec{z}_{1} ,\vec{z}_{2} , \ldots ,\vec{z}_{k} \) of components and their abundances in an analyzed mixture can be reconstructed (synthesized, extracted) from the spectra of this mixture \( \vec{x}( \equiv \vec{x}_{1} ) \) and its (p − 1) fractions \( \vec{x}_{2} ,\vec{x}_{3} , \ldots ,\vec{x}_{p} (p \ge k), \) which can be obtained by separation of the mixture under consideration [60, 61]. Expressing the vectors \( \vec{x}_{1} ,\vec{x}_{2} , \ldots ,\vec{x}_{p} \) by linear superposition of transposed eigenvectors \( \vec{q}_{1}^{\prime } ,q_{2}^{\prime } , \ldots ,\vec{q}_{n}^{\prime } \) of the Gramian matrix \( {\mathop{X}\limits^{\frown}}^{\prime}\mathop{X}\limits^{\frown} \) of the data matrix

$$ \widehat{X} = \left[ {\begin{array}{*{20}l} {\vec{x}_{1} } \hfill \\ {\vec{x}_{2} } \hfill \\ \cdots \hfill \\ {\vec{x}_{p} } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {x_{11} } \hfill & {x_{12} } \hfill & \ldots \hfill & {x_{1n} } \hfill \\ {x_{21} } \hfill & {x_{22} } \hfill & \ldots \hfill & {x_{2n} } \hfill \\ \ldots \hfill & \ldots \hfill & \ldots \hfill & \ldots \hfill \\ {x_{p1} } \hfill & {x_{p2} } \hfill & \ldots \hfill & {x_{pn} } \hfill \\ \end{array} } \right] $$

associated with the eigenvalues \( \lambda_{1} ,\lambda_{2} , \ldots ,\lambda_{n} \)

$$ \widehat{X}^{\prime } \widehat{X}\vec{q}_{j} = \lambda_{j} \vec{q}_{j} ,\quad j = 1,2, \ldots ,n, $$

arranged in descending order \( (\lambda_{1} \ge \lambda_{2} \ge \cdots \ge \lambda_{n} ) \) then

$$ \vec{x}_{i} \sum\limits_{j = 1}^{n} {u_{ij} \sqrt {\lambda_{j} } } \vec{q}_{j}^{\prime } ,\quad i = 1,2, \ldots ,p. $$

From this it is obvious that eigenvectors associated with the largest eigenvalues are most important and eigenvectors associated with the smallest eigenvalues are least important. So, retaining only the first k eigenvalues, which are significant at an accepted level, we have for \( i = 1,2, \ldots ,p \)

$$ \vec{x}_{i} \doteq \sum\limits_{j = 1}^{k} {v_{ij} \vec{q}_{j}^{\prime } }. \quad {\text{Due to the fact that}} \;\;\vec{x}_{i} = \sum\limits_{j = 1}^{k} {d_{ij} \vec{z}_{j} } $$

it holds, within the same tolerance, as well

$$ \vec{z}_{j} = \left[ {z_{j1} ,z_{j2} , \ldots ,z_{jn} } \right] \doteq \sum\limits_{m = 0}^{k} {t_{jm} \vec{q}_{m}^{\prime } ;\quad j = 1,2, \ldots ,k.} $$

The coefficients \( t_{jm} \) (elements of the matrix \( \mathop{T}\limits^{\frown} = \left[ {t_{jm} } \right]_{j = 1, \ldots ,k}^{m = 1, \ldots ,k} \)) are then determined making use of the fact that intensities of lines of the components of analyzed mixture in the spectra of the mixture and its fractions are nonnegative

$$ \widehat{Z} = \left[ {\begin{array}{*{20}l} {\vec{z}_{1} } \hfill \\ {\vec{z}_{2} } \hfill \\ \ldots \hfill \\ {\vec{z}_{k} } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {z_{11} } \hfill & {z_{12} } \hfill & \ldots \hfill & {z_{1n} } \hfill \\ {z_{21} } \hfill & {z_{22} } \hfill & \ldots \hfill & {z_{2n} } \hfill \\ \ldots \hfill & \ldots \hfill & \ldots \hfill & \ldots \hfill \\ {z_{k1} } \hfill & {z_{k2} } \hfill & \ldots \hfill & {z_{kn} } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {t_{11} } \hfill & {t_{12} } \hfill & \ldots \hfill & {t_{1k} } \hfill \\ {t_{21} } \hfill & {t_{22} } \hfill & \ldots \hfill & {t_{2k} } \hfill \\ \ldots \hfill & \ldots \hfill & \ldots \hfill & \ldots \hfill \\ {t_{k1} } \hfill & {t_{k2} } \hfill & \ldots \hfill & {t_{kk} } \hfill \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}l} {\vec{q}_{1}^{\prime } } \hfill \\ {\vec{q}_{2}^{\prime } } \hfill \\ \ldots \hfill \\ {\vec{q}_{k}^{\prime } } \hfill \\ \end{array} } \right] = \widehat{T} \cdot \widehat{Q} \ge \widehat{O} $$

where

$$ \widehat{Q} = \left[ {\begin{array}{*{20}l} {\bar{q}_{1}^{\prime } } \hfill \\ {\bar{q}_{2}^{\prime } } \hfill \\ \cdots \hfill \\ {\bar{q}_{k}^{\prime } } \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {q_{11}^{\prime } } \hfill & {q_{12}^{\prime } } \hfill & \cdots \hfill & {q_{1n}^{\prime } } \hfill \\ {q_{21}^{\prime } } \hfill & {q_{22}^{\prime } } \hfill & \cdots \hfill & {q_{2n}^{\prime } } \hfill \\ \cdots \hfill & \cdots \hfill & \cdots \hfill & \cdots \hfill \\ {q_{k1}^{\prime } } \hfill & {q_{k2}^{\prime } } \hfill & \cdots \hfill & {q_{kn}^{\prime } } \hfill \\ \end{array} } \right], $$

and also abundances \( d_{i,j} \) of those components in the analyzed mixture and their fractions are nonnegative

$$ \widehat{D} = \left[ {\begin{array}{*{20}l} {d_{11} } \hfill & {d_{12} } \hfill & \cdots \hfill & {d_{1k} } \hfill \\ {d_{21} } \hfill & {d_{22} } \hfill & \cdots \hfill & {d_{2k} } \hfill \\ \cdots \hfill & \cdots \hfill & \cdots \hfill & \cdots \hfill \\ {d_{p1} } \hfill & {d_{p2} } \hfill & \cdots \hfill & {d_{pk} } \hfill \\ \end{array} } \right] = \widehat{X}\widehat{Q}^{\prime } \widehat{T}^{\prime } \left( {\widehat{T}\widehat{Q}\widehat{Q}^{\prime } \widehat{T}^{\prime } } \right)^{ - 1} \ge \widehat{O} $$

(the Procrustes problem of quadratic programming).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fiala, J., Šesták, J. (2017). Professional Value of Scientific Papers and Their Citation Responding. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_25

Download citation

Publish with us

Policies and ethics