Advertisement

On the Mathematical Structure of Physical Quantities

  • Jiří J. MarešEmail author
  • Pavel Hubík
  • Václav Špička
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

The choice of the mathematical structure of physical quantities, which is natural for the description of finite physical reality and related problems, is discussed from the historical and the epistemological points of view. We show that for the establishment of physical quantities is fully sufficient the system of rational numbers which are equivalent to the finite ordered sets of integers, while the currently used system of real numbers is quite redundant for such a purpose. These facts may have far reaching consequences not only for pure epistemology but for the interpretation of many fundamental physical phenomena as well. Finally, the relation between the chosen structure of physical quantities and the so-called Principle of conformity of physics and mathematics is shortly discussed.

Keywords

Physical Quantity Rational Number Physical Measurement Continue Fraction Measurement Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Palacios J (1964) Dimensional analysis. Macmillan & Co., Ltd., LondonGoogle Scholar
  2. 2.
    Cariñena JF, Santander M (1988) Dimensional analysis. In: Hawkes PW (ed) Advances of electronics and electron physics. Academic Press Inc., BostonGoogle Scholar
  3. 3.
    Savage CW, Ehrlich P (eds) (1992) Philosophical and foundational issues in measurement theory. LEA-Publishers, New JerseyGoogle Scholar
  4. 4.
    Mareš JJ (2011) Hotness manifold, phenomenological temperature and other related concepts of thermal physics. In: Šesták J et al (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, p 327Google Scholar
  5. 5.
    Mareš JJ (2015) Do we know what the temperature is? J Therm Anal Calorim 120:223–230CrossRefGoogle Scholar
  6. 6.
    Cantor M (1907) Vorlesungen über Geschichte der Mathematik. B.G. Teubner, LeipzigGoogle Scholar
  7. 7.
    von Fritz K (1945) The discovery of incommensurability by Hippasus of Metapontum. Ann d Math 46:242–264CrossRefGoogle Scholar
  8. 8.
    Euclid of Alexandria: Elements. There are a number of critical editions in various languages; authors used Základy (Elementa), Czech transl. by Servít F (1907) J.Č.M., PrahaGoogle Scholar
  9. 9.
    Tropfke J (1930) Geschichte der Elementar-Mathematik. W. de Gruyter & Co., BerlinGoogle Scholar
  10. 10.
    Legendre AM (1823) Éléments de géométrie avec des notes, 2nd edn. F. Didot, ParisGoogle Scholar
  11. 11.
    Bolzano B (1850) Paradoxien des Unedlichen. Orig. ed.: F. Přihonsky, Budissin, Reprint: (2006) Verlag Dr. Müller, SaarbrückenGoogle Scholar
  12. 12.
    Dedekind R (1887) Was sind und was sollen die Zahlen? Stetigkeit und Irrationale Zahlen. Vieweg & Sohn, BraunschweigGoogle Scholar
  13. 13.
    Perron O (1921) Irrationalzahlen. Walter de Gruyter & Co., BerlinGoogle Scholar
  14. 14.
    du Bois-Reymond P (1882) Die Allgemeine Functionentheorie. H. Laupps, TübingenGoogle Scholar
  15. 15.
    Cantor G (1932) Grundlagen einer allgemeinen Mannigfaltigkeitslehre; Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. In: Zermelo E (ed) G. Cantor—gesammelte Abhandlungen mathematischen und philosophischen Inhalts. B.G. Teubner, Leipzig, pp 165–208Google Scholar
  16. 16.
    Fraenkel A (1923) Einleitung in die Mengenlehre. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Hilbert D (1926) Über das Unendliche. Math Annalen 95:161–190CrossRefGoogle Scholar
  18. 18.
    Gauss CF (1860) Letter from 12 July 1831. Briefwechsel Gauß-Schumacher II, Altona, p 269Google Scholar
  19. 19.
    Kronecker L (1887) Ueber die Zahlbegriff. J Reine Angew Math 101:337–355Google Scholar
  20. 20.
    Kronecker L (1901) Vorlesungen über Mathematik. B. G. Teubner, LeipzigGoogle Scholar
  21. 21.
    Campbell NR (1920) Physics—the elements. Cambridge University Press, Cambridge; Reprint (1957) Foundations of science, New York, DoverGoogle Scholar
  22. 22.
    Bridgman PW (1927) The logic of modern physics. MacMillan, New YorkGoogle Scholar
  23. 23.
    Stevens SS (1946) On the theory of scales of measurement. Science 103:677–680CrossRefGoogle Scholar
  24. 24.
    Hilbert D (1899) Grundlagen der Geometrie. In: Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, B.G. Teubner, Leipzig; English translation (1959) The foundations of geometry. The Open Court Publishing Co., La Salle, IllGoogle Scholar
  25. 25.
    Hölder O (1901) Die Axiome der Quantität und die Lehre vom Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physikalische Classe, Bd. 53:1–64Google Scholar
  26. 26.
    Lodge A (1888) The multiplication and division of concrete quantities. Nature 38:281–283Google Scholar
  27. 27.
    Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, OxfordGoogle Scholar
  28. 28.
    Einstein A (1923) The meaning of relativity. Princeton University Press, PrincetonGoogle Scholar
  29. 29.
    Frank P (1932) Das Kausalgesetz und seine Grenzen. Springer, WienCrossRefGoogle Scholar
  30. 30.
    Kyburg Jr HE (1993) Measuring errors of measurement. In: Ref [3]Google Scholar
  31. 31.
    Sheynin OB (1979) C. F. Gauss and the theory of errors. Arch Hist Exact Sci 20:21–72CrossRefGoogle Scholar
  32. 32.
    Czuber E (1932) Wahrscheinlichkeitsrechnung und ihre Anwendung auf Fehlerausgleichung. B.G. Teubner, LeipzigGoogle Scholar
  33. 33.
    Rényi A (1962) Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie. VEB Deutscher Verlag der Wissenschaften, Berlin. Czech transl. (1972) Teorie pravděpodobnosti. Academia, PrahaGoogle Scholar
  34. 34.
    Lévy-Leblond J-M, Balibar F (1990) Quantics—rudiments of quantum physics. North-Holland, AmsterdamGoogle Scholar
  35. 35.
    von Helmholtz H (1887) Zählen und Messen, erkenntnisstheoretisch betrachtet. In: Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctotorjubiläum gewidmet, Fues’ Verlag, Leipzig, pp 17–52Google Scholar
  36. 36.
    Russell B (1903) Principles of mathematics. Norton, New YorkGoogle Scholar
  37. 37.
    Krantz D, Luce RD, Suppes P, Tversky A (1971) Foundations of measurement: additive and polynomial representations. Academic Press, New YorkGoogle Scholar
  38. 38.
    Quine WVO (1951) Two dogmas of empiricism. Philos Rev 60:20–43CrossRefGoogle Scholar
  39. 39.
    Hardy GH, Wright EM (2011) An introduction to the theory of numbers, 6th edn. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Leman A (1952) Vom periodischen Dezimalbruch zur Zahlentheorie. B. G. Teubner, LeipzigGoogle Scholar
  41. 41.
    Niven I (1961) Numbers: rational and irrational. The Mathematical association of America, WashingtonGoogle Scholar
  42. 42.
    Khinchin, AY (1949) Tsepnye droby. GITL, Leningrad; English transl (1964) Continued fractions. University Press, ChicagoGoogle Scholar
  43. 43.
    Perron O (1913) Die Lehre von den Kettenbrüchen. B. G. Teubner, LeipzigGoogle Scholar
  44. 44.
    Olds CD (1963) Continued fractions. Random House Inc., New YorkGoogle Scholar
  45. 45.
    Sushkevich AK (1956) Teoriya chisel—elementarnyi kurs. Izdatel’stvo Kh. Uni., Khar’kivGoogle Scholar
  46. 46.
    Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z Phys 33:879–893CrossRefGoogle Scholar
  47. 47.
    Bischoff E (1903) Die Kabbalah, Einführung in die Jüdische Mystik. Grieben’s Verlag, LeipzigGoogle Scholar
  48. 48.
    Mueckenheim W (2008) The infinite in sciences and arts. In: Proceedings of the 2nd international symposium of mathematics and its connections to the arts and sciences. University of Southern Denmark, Odense, pp 265–272, arXiv:0709.4102 [math.GM]
  49. 49.
    Rodych V (2011) Wittgenstein’s philosophy of mathematics. In: Zalta EN (ed) The Stanford encyclopedia of philosophy, http://plato.stanford.edu/archives/sum2011/entries/wittgenstein-mathematics/
  50. 50.
    Hartman RS (1942) Prime number and cosmical number. Philos Sci 9:190–196CrossRefGoogle Scholar
  51. 51.
    Feynman R, Leighton RB, Sands M (1964) The Feynman’s lectures on physics, vol I. Addison-Wesley, New YorkGoogle Scholar
  52. 52.
    Fredkin E (1992) Finite Nature. In: Proceedings of the XXVIIth Rencontre de Moriond, Les Arcs, Savoie, FranceGoogle Scholar
  53. 53.
    Good IJ (1988) Physical numerology. Technical Report No. 88–26, Dep. of Statistics, Virginia Tech., Blacksburg, VA24 601Google Scholar
  54. 54.
    McGoveran DO, Noyes HP (1989) Physical numerology? SLAC-PUB-4929, pp 1–17Google Scholar
  55. 55.
    Fürth R (1929) Über einen Zusammenhang zwischen quantenmechanischer Unschärfe und Struktur der Elementarteilchen und hierauf begründete Berechnung der Massen von Proton und Elektron. Z Phys 57:429–446CrossRefGoogle Scholar
  56. 56.
    Kritov A (2013) A new large number numerical coincidences. Prog Phys 10:25–28Google Scholar
  57. 57.
    Eddington A (1939) The philosophy of physical science. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jiří J. Mareš
    • 1
    Email author
  • Pavel Hubík
    • 2
  • Václav Špička
    • 1
  1. 1.Division of Solid-State Physics Institute of Physics, Czech Academy of SciencesPragueCzech Republic
  2. 2.Division of Solid-State Physics Institute of Physics, Czech Academy of SciencesPragueCzech Republic

Personalised recommendations