Biomaterials and Nanotechnology Approach to Medical Enhancement

  • Tomáš KováříkEmail author
  • Tomáš Křenek
  • Petr Bělský
  • Jaroslav Šesták
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)


Over the past few decades, biomaterial science has emerged as a new field in which a regeneration or replacement of damaged tissue has become one of the main focuses. Also, great advances in the application of multifunctional nanoparticles for biomedical applications have been made. Implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to applied research. This chapter will examine the key aspects of application of traditional biomaterials, their physicochemical properties, and behavior in biological system. Moreover, the unique properties of nanomaterials are highlighted in relation to their vast nanostructural characteristics and the field of application. With 164 references.


Simulated Body Fluid Bioactive Glass Bone Tissue Engineering Bone Ingrowth Magnetic Resonance Imaging Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The result was developed within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, cofounded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI program and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Program I. This action was also supported by the Technology Agency of the Czech Republic, Program ALFA, project no. TA04020860. Shared aims by LASAK ©—The Laboratory for Glass and Ceramics in Prague (Doc. Zdeněk Strnad, Ing. Jan Riedel and Dr. Jakub Strnad) as well as by Universität Bremen in Germany (Dr. Michael Maas) are appreciated.


  1. 1.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256CrossRefGoogle Scholar
  2. 2.
    Ginebra MP, Espanol M, Montufar EB, Perez RA, Mestres G (2010) New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater 6:2863–2873CrossRefGoogle Scholar
  3. 3.
    Arcos D, Vallet-Regí M (2010) Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888CrossRefGoogle Scholar
  4. 4.
    Lemons JE, Misch-Dietsh F, McCracken MS (2015) Biomaterials for dental implants. In: Dental implant prosthetics. St. Louis (Chapter 4, ISBN 9780323078450)Google Scholar
  5. 5.
    Babu ARS, Ogle O (2015) Tissue response: biomaterials, dental implants, and compromised osseous tissue. Dent Clin North Am 59:305–315CrossRefGoogle Scholar
  6. 6.
    Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verné E, Vitale-Brovarone Ch, Coggiola A, Dolcino D, Ferraris M (2014) Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 10:1064–1087CrossRefGoogle Scholar
  7. 7.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil H (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433Google Scholar
  8. 8.
    Hsiao ChR, Lin ChW, Chou ChM, Chung ChJ, He JL (2015) Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors. Appl Surf 346:50–56CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Liu F, Nguyen KT, Ma X, Wang X, Xing B, Zhao Y (2012) Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Funct Mater 22:5144–5156CrossRefGoogle Scholar
  10. 10.
    Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M (2012) Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 22:396–404CrossRefGoogle Scholar
  11. 11.
    Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2:3–44CrossRefGoogle Scholar
  12. 12.
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46CrossRefGoogle Scholar
  13. 13.
    Burtea C, Laurent S, Mahieu I, Larbanoix L, Roch A, Port M (2011) In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media Mol Imaging 6:236–250Google Scholar
  14. 14.
    Broberg Kristensen J, Meyer RL, Horsmans Poulsen C, Kragh KM, Besenbacher F, Sogaard Laursen B (2010) Biomimetic silica encapsulation of enzymes for replacement of biocides in antifouling coatings. Green Chem 12:387–394CrossRefGoogle Scholar
  15. 15.
    Kawachi Y, Kugimiya S, Nakamura H, Kato K (2014) Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity. Appl Surf 314:64–70CrossRefGoogle Scholar
  16. 16.
    Rovira-Bru M, Giralt F, Cohen Y (2001) Protein adsorption onto zirconia modified with terminally grafted polyvinylpyrrolidone. J Colloid Interface Sci 235:70–79CrossRefGoogle Scholar
  17. 17.
    Ciston S, Lueptow RM, Gray KA (2008) Bacterial attachment on reactive ceramic ultrafiltration membranes. J Membr Sci 320:101–107CrossRefGoogle Scholar
  18. 18.
    Largueze J-B, Kirat KE, Morandat S (2010) Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf B 79:33–40CrossRefGoogle Scholar
  19. 19.
    Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 62:125–55Google Scholar
  20. 20.
    Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168CrossRefGoogle Scholar
  21. 21.
    Tomsia AP, Launey ME, Lee JS, Mankani MH, Wegst UGK, Saiz E (2011) Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 26:25–49Google Scholar
  22. 22.
    Christenson EM, Anseth KS, van den Beucken LJJP, Chan CK, Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS, Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007) J Orthop Res 25:11–22Google Scholar
  23. 23.
    Mahapatro A (2015) Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng C 55:227–251CrossRefGoogle Scholar
  24. 24.
    Mochizuki A, Kaneda H (2015) Study on the blood compatibility and biodegradation properties of magnesium alloys. Mater Sci Eng C 47:204–210CrossRefGoogle Scholar
  25. 25.
    Ma J, Zhao N, Betts L, Zhu D (2015) Bio-adaption between magnesium alloy stent and the blood vessel: a review. J Mat Sci Tech (ISSN 1005–0302,
  26. 26.
    Fan J, Qiu X, Niu X, Tian Z, Sun W, Liu X, Li Y, Li W, Meng J (2013) Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg–1.5Y–1.2Zn–0.44Zr alloys for biodegradable metallic implants. Mat Sci Eng C 33:2345–2352CrossRefGoogle Scholar
  27. 27.
    Scheideler L, Füger C, Schille C, Rupp F, Wendel H-P, Hort N, Reichel HP, Geis-Gerstorfer J (2013) Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomat 9:8740–8745CrossRefGoogle Scholar
  28. 28.
    Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomat 6:1824–1833CrossRefGoogle Scholar
  29. 29.
    Alvarez K, Nakajima H (2009) Met Scaffolds Bone Regeneration 2:790–832Google Scholar
  30. 30.
    Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978CrossRefGoogle Scholar
  31. 31.
    Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T, Higashi S (1982) Apatite- and wollastonite-containing glass ceramics for prosthetic applications. Bull Inst Chem Res 60:260–268Google Scholar
  32. 32.
    Bohner M, Gbureck U, Barralet JE (2005) Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 26:6423–6429CrossRefGoogle Scholar
  33. 33.
    Fidancevska E, Ruseska G, Bossert J, Lin Y-M, Boccaccini AR (2007) Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mat Chem Phys 103:95–100CrossRefGoogle Scholar
  34. 34.
    Huet R, Sakona A, Kurtz SM (2011) Strength and reliability of alumina ceramic femoral heads: review of design, testing, and retrieval analysis. J Mech Behav Biomed Mat 4:476–483CrossRefGoogle Scholar
  35. 35.
    Gil-Albarova J, Garrido-Lahiguera R, Salinas AJ, Román J, Bueno-Lozano AL, Gil-Albarova R, Vallet-Regı́ M (2004) The in vivo performance of a sol–gel glass and a glass-ceramic in the treatment of limited bone defects. Biomaterials 25:4639–4645Google Scholar
  36. 36.
    Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Micropor Mesopor Mat 77:1–45CrossRefGoogle Scholar
  37. 37.
    Balas F, Manzano M, Colilla M, Vallet-Regí M (2008) L-Trp adsorption into silica mesoporous materials to promote bone formation. Acta Biomater 4:514–522CrossRefGoogle Scholar
  38. 38.
    Salinas AJ, Merino JM, Babonneau F, Gil FJ, Vallet-Regí M (2007) Microstructure, macroscopic properties of bioactive CaO–SiO2–PDMS hybrids. J Biomed Mater Res 81:274–282CrossRefGoogle Scholar
  39. 39.
    Mackenzie JD, Huang Q, Iwamoto T (1996) Mechanical properties of ormosils. J Sol-Gel Sci Technol 7:151–161CrossRefGoogle Scholar
  40. 40.
    Manzano M, Aina V, Aren CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regí M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137:30–37CrossRefGoogle Scholar
  41. 41.
    Chen Q, Miyata N, Kokubo T, Nakanura T (200) Bioactivity, Mechanical properties of PDMA-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process. J. Biomed. Mater. Res. 51:605–611Google Scholar
  42. 42.
    Tsuru K, Ohtuki C, Osaka A (1997) Bioactivity of sol-gel derived organically modified silicates. J Mater Sci Mater Med 8:57–61CrossRefGoogle Scholar
  43. 43.
    Skorospelova VI, Stepanov SA (1974) Behavior of iron ions in glasses of the K2O–Al2O3–B2O3 system. Izv Akad Nauk SSSR Neorg Mater 10:1864–1871Google Scholar
  44. 44.
    Šesták J, Mareš JJ, Hubík P (2011) Glassy, amorphous and nano-crystalline materials, thermal physics, analysis, structure and properties, hot topics in thermal analysis and calorimetry 8, Springer (ISBN 978-90-481-2881-5)Google Scholar
  45. 45.
    Hench LL, Splinter RS, Allen WS (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Res Symp 2:117CrossRefGoogle Scholar
  46. 46.
    Brånemark PI (1969) Intraosseous anchorage of dental prostheses. Scand J Plast Reconstr Surg 3:81–93CrossRefGoogle Scholar
  47. 47.
    Hench LL, Clark Jr. AE, Schaake HF (1972) Int Int J Non-Cryst Sol 8–10:837Google Scholar
  48. 48.
    Hench LL, Wilson J (1999) An introduction to bioceramics. Singapore World Scientific 1–23:41–62Google Scholar
  49. 49.
    Strnad Z (1992) Role of the glass phase in bioactive glass-ceramics. Biomaterials 13:317–321CrossRefGoogle Scholar
  50. 50.
    Koga N, Strnad J, Strnad Z, Šesták J (2003) Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics. J Therm Anal Calorim 71:927–938CrossRefGoogle Scholar
  51. 51.
    Strnad J, Strnad Z, Šesták J (2007) Physico-chemical properties and healing capacity of potentially bioactive surfaces. J Therm Anal Calorim 88:775–779. (2007) Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry: surface characteristics and bone-implant contact formation. J Phys Chem Solids 68:841–8Google Scholar
  52. 52.
    Šesták J, Strnad Z, Strnad J, Holeček M, Koga N (2008) Biomedical thermodynamics and implantology aspects of biocompatible glass-ceramics and otherwise modified inorganic materials and Ti-surfaces. Adv Mat Res 39–40:329–333. Strnad J, Protivinsky J, Veltruská K, Helebrant A, Šesták J, Strnad Z (2004) Interaction of acid and alkali treated titanium with dynamic simulated body environment. J Thermal Anal Calor 76:17Google Scholar
  53. 53.
    Šesták J, Koga N, Šimon P, Foller B, Roubíček P, Wu N-L (2013) Amorphous inorganic polysialates: geopolymeric composites and the bioactivity of hydroxyl groups. In: Thermal analysis of micro, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Springer, London, pp 441–460 (ISBN: 978-90-481-3149-5)Google Scholar
  54. 54.
    Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646CrossRefGoogle Scholar
  55. 55.
    Marx RE (2000) In: Davies JE (ed) Platelet concentrate: a strategy for accelerating and improving bone regeneration in bone engineering. EM Squared Inc.Google Scholar
  56. 56.
    Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1570. (1997) Glasses and genes: a forecast for the future. Glastech Ber Glass Sci Tech 70:439–48. (1996) Life and death: the ultimate phase transformation. Thermochim Acta 280/281:1–14Google Scholar
  57. 57.
    Robertson DM, Pierre L, Chahal R (1976) Preliminary observations of bone ingrowth into porous materials. J Biomed Mater Res 10:335–344CrossRefGoogle Scholar
  58. 58.
    Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10:788–792CrossRefGoogle Scholar
  59. 59.
    Hollister SJ, Murphy WL (2011) Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 17:459–474CrossRefGoogle Scholar
  60. 60.
    Klawitter JJ, Weinstein AM (1974) The status of porous materials to obtain direct skeletal attachment by tissue ingrowth. Acta Orthop Belg 40:755–765Google Scholar
  61. 61.
    Spector M, Michno MJ, Smarook WH, Kwiatkowski GT (1978) A highmodulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants. J Biomed Mater Res 12:665–677CrossRefGoogle Scholar
  62. 62.
    Hahn H, Palich W (1970) Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res 4:571–577CrossRefGoogle Scholar
  63. 63.
    Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRefGoogle Scholar
  64. 64.
    Turner TM, Sumner DR, Urban RM, Rivero DP, Galante JO (1986) A comparative study of porous coatings in a weight-bearing total hiparthroplasty model. J Bone Joint Surg Am 68:1396–1409CrossRefGoogle Scholar
  65. 65.
    Clemow AJ, Weinstein AM, Klawitter JJ, Koeneman J, Anderson J (1981) Interface mechanics of porous titanium implants. J Biomed Mater Res 15:73–82CrossRefGoogle Scholar
  66. 66.
    Cameron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10:295–302CrossRefGoogle Scholar
  67. 67.
    Collier JP, Mayor MB, Chae JC, Surprenant VA, Surprenant HP, Dauphinais LA (1988) Macroscopic and microscopic evidence of prosthetic fixation with porous-coated materials. Clin Orthop Pract 235:173–180Google Scholar
  68. 68.
    Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163CrossRefGoogle Scholar
  69. 69.
    Cook SD, Thomas KA, Dalton JE, Volkman TK, Whitecloud TS III, Kay JF (1992) Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength. J Biomed Mater Res 26:9891001CrossRefGoogle Scholar
  70. 70.
    De Groot K, Geesink R, Klein CP, Serekian P (198–7) Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 21:1375–1381Google Scholar
  71. 71.
    Li H, Khor KA, Cheang P (2003) Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomater 24:949–957CrossRefGoogle Scholar
  72. 72.
    Siddharthan A, Kumar TS, Seshadri SK (2010) In situ composite coating of titania–hydroxyapatite on commercially pure titanium by microwave processing. Surf Coat Technol 204:1755–1763CrossRefGoogle Scholar
  73. 73.
    Yan F-Y, Shi Y-L, Ni J-H (2011) n-SiO2 Embedded HA/TiO2 composite coatings deposited on pure titanium substrate by micro-arc oxidation. In: Turkyilmaz I (ed) Implant dentistry—The most promising discipline of dentistry, vol 13. In Tech. (ISBN 978-953-307-481-8)Google Scholar
  74. 74.
    Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomat 25:2533–2538CrossRefGoogle Scholar
  75. 75.
    Lin CM, Yen SK (2004) Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopedic applications. J Mater Sci Mater Med 15:1237–1246CrossRefGoogle Scholar
  76. 76.
    Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Progr Mater Sci 52:1–61CrossRefGoogle Scholar
  77. 77.
    Kim DH, Kong YM, Lee SH, Kim H-E, Lee I-S, Heo S-J, Koak J-Y (2003) Composition and crystallization of hydroxyapatite coating layer formed by electron beam deposition. J Am Ceram Soc 86:186–188CrossRefGoogle Scholar
  78. 78.
    Chen TS, Lacefield WR (1994) Crystallization of ion beam deposited calcium phosphate coatings. J Mater Res 9:1284–1290CrossRefGoogle Scholar
  79. 79.
    Shahrjerdi A, Mustapha F, Bayat M, Sapuan SM, Majid DLA (2011) Fabrication of functionally graded hydroxyapatite-titanium by applying optimal sintering procedure and powder metalurgy. Int J Phys Sci 6:2258–2267Google Scholar
  80. 80.
    Hero H, Wie H, Jorgensen RB, Ruyter IE (1994) Hydroxyapatite coatings on Ti produced by hot isostatic pressing. J Biomed Mater Res 28:343–348CrossRefGoogle Scholar
  81. 81.
    Lee J, Aoki H (1995) Hydroxyapatite coating Ti plate by a dipping method. Biomed Mater Eng 5:49–58Google Scholar
  82. 82.
    Volke JGC, Van Dijk K, Schaeken HG, De Groot K, Jansen JA (1994) Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res 28:1477–1484CrossRefGoogle Scholar
  83. 83.
    Cotell CM (1993) Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films. Appl Surf Sci 69:140–148CrossRefGoogle Scholar
  84. 84.
    Thian ES, Huang J, Best SM, Barber ZH, Bonfield W (2005) A new way of incorporating silicon in hydroxyapatite (Si-HA) as thin films. J Mater Sci Mater Med 16:411–415CrossRefGoogle Scholar
  85. 85.
    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomat 24:4609–4620CrossRefGoogle Scholar
  86. 86.
    Driessens FCM, Verbeeck RMH, Kiekens P (1983) Mechanism of substitution in carbonated apatites. Z Anorg Allg Chem 504:195–200CrossRefGoogle Scholar
  87. 87.
    Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W (2005) Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. J Mater Sci Mater Med 16:899–907CrossRefGoogle Scholar
  88. 88.
    Romo LA (1954) Synthesis of carbonate-apatite. J Am Chem Soc 76:3924–3925CrossRefGoogle Scholar
  89. 89.
    Wang H, Branton D (2001) Nanopores with a spark for single-molecule detection. Nat Biotechnol 19:622–623CrossRefGoogle Scholar
  90. 90.
    Gao JH, Gu HW, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107CrossRefGoogle Scholar
  91. 91.
    Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640CrossRefGoogle Scholar
  92. 92.
    Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, Kim GS, Somerman MJ, Ma PX (2007) Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomat 28:335–343CrossRefGoogle Scholar
  93. 93.
    Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Interdiscip Rev Nanomed Nanobiotechnol 1:568–581Google Scholar
  94. 94.
    Lioni L, Boiarski A, Desai TA (2002) Characterization of nanoporous membranes for immunoisolation: diffusion properties and tissue effects. Biomed Microdev 4:131–139CrossRefGoogle Scholar
  95. 95.
    Singh SP, Arya SK, Pandey P, Malhotra BD, Saha S, Sreenivas K, Gupta V (2007) Cholesterol biosensor based on RF sputtered zinc oxide nanoporous thin film. App Phys Lett 91:1–3Google Scholar
  96. 96.
    Cho M, Contreras EQ, Lee SS, Jones ChJ, Jang W, Colvin VL (2014) Characterization and optimization of the fluorescence of nanoscale iron oxide/quantum dot complexes. J Phys Chem C 118:14606–14616CrossRefGoogle Scholar
  97. 97.
    Fu A et al (2007) Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Lett 7:179–182CrossRefGoogle Scholar
  98. 98.
    Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621CrossRefGoogle Scholar
  99. 99.
    Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97CrossRefGoogle Scholar
  100. 100.
    Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Phys E Low Dimens Syst Nanostruct 25:1–12CrossRefGoogle Scholar
  101. 101.
    Sinani VA, Koktysh DS, Yun BG, Matts RL, Pappas TC, Motamedi M, Thomas SN, Kotov NA (2003) Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Lett 3:1177–1182CrossRefGoogle Scholar
  102. 102.
    Vaijayanthimala V, Lee DK, Kim SC, Yen A, Tsai N, Ho D, Chang HC, Shenderova O (2015) Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opin Drug Deliv 12:735–749CrossRefGoogle Scholar
  103. 103.
    Lai L, Barnard AS (2014) Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. Nanoscale 6:14185–14189CrossRefGoogle Scholar
  104. 104.
    Behler KD, Stravato A, Mochalin V, Korneva G, Yushin G, Gogotsi Y (2009) Nanodiamond-polymer composite fibers and coatings. ACS Nano 3:363–369CrossRefGoogle Scholar
  105. 105.
    Qureshi A, Gurbuz Y, Howell M, Kang WP, Davidson JL (2010) Nanocrystalline diamond film for biosensor applications. Diam Relat Mater 19:457–461CrossRefGoogle Scholar
  106. 106.
    Chen T, Lu F, Streets AM, Fei P, Quan J, Huang Y (2013) Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. Nanoscale 5:4701–4705CrossRefGoogle Scholar
  107. 107.
    Dolenko TA, Burikov SA, Vervald AM, Vlasov II, Dolenko SA, Laptinskiy KA, Rosenholm JM, Shenderova OA (2014) Optical imaging of fluorescent carbon biomarkers using artificial neural networks. J Biomed Opt 19:117007CrossRefGoogle Scholar
  108. 108.
    Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  109. 109.
    Kaur R, Badea I (2013) Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomed 8:203–220CrossRefGoogle Scholar
  110. 110.
    Kim BH, Lee N, Kim H, An K, Park Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRefGoogle Scholar
  111. 111.
    Huh YM, Jun YW, Song HT et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127:12387–12391CrossRefGoogle Scholar
  112. 112.
    Mornet S, Vasseur S, Grasset F et al (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRefGoogle Scholar
  113. 113.
    Zeng C, Shi X, Wu B, Zhang D, Zhang W (2014) Colloids containing gadolinium-capped gold nanoparticles as high relaxivity dual-modality contrast agents for CT and MRI. Colloids Surf B Biointerfaces 123:130–135CrossRefGoogle Scholar
  114. 114.
    Li X, Zhao W, Liu X, Chen K, Zhu S, Shi P, Chen Y, Shi J (2016) Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomater 30:378–387CrossRefGoogle Scholar
  115. 115.
    Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mat Sci Eng C 60:569–578CrossRefGoogle Scholar
  116. 116.
    Shah M, Naseer MI, Choi MH, Kim MO, Yoon SC (2010) Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: preparation, characterization and in vitro evaluation. Int J Pharma 400:165–175CrossRefGoogle Scholar
  117. 117.
    Rai M, Ingle AP, Gupta I, Brandelli A (2015) Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharma 496:159–172CrossRefGoogle Scholar
  118. 118.
    Rahimi M, Kilaru S, Sleiman GEH, Saleh A, Rudkevich D, Nguyen K (2008) Synthesis and characterization of thermo-sensitive nanoparticles for drug delivery applications. J Biomed Nanotech 4:482–490CrossRefGoogle Scholar
  119. 119.
    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang X-J (2014) pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotech Adv 32:693–710CrossRefGoogle Scholar
  120. 120.
    Nogueira DR, Scheeren LE, Vinardell MP, Mitjans M, Infante MR, Rolim CMB (2015) Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery. Mat Sci Eng C 57:100–106CrossRefGoogle Scholar
  121. 121.
    Xi G, Robinson E, Mania-Farnell B, Vanin EF, Shim KW, Takao T, Allender EV, Mayanil CS, Soares MB, Ho D, Tomita T (2014) Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed 10:381–391Google Scholar
  122. 122.
    Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Rashid MMA, Ho D, Chow EK-H (2014) Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano 8:12151–12166CrossRefGoogle Scholar
  123. 123.
    Martín R, Álvaro M, Herance JR, García H (2010) Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4:65–74CrossRefGoogle Scholar
  124. 124.
    Greef MD, Kok HP, Correia D, Bel A, Crezee J (2010) Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty. Med Phys 37:4540–4545CrossRefGoogle Scholar
  125. 125.
    Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Mag Mag Mat 324:903–915CrossRefGoogle Scholar
  126. 126.
    Gonzalez-Fernandez MA, Torres TE, Andrés-Vergés M, Costo R, Presa P, Serna CJ, Morales MP, Marquina C, Ibarra MR, Goya GF (2009) Magnetic nanoparticles for power absorption: optimizing size, shape and magnetic properties. J Sol State Chem 182:2779–2784CrossRefGoogle Scholar
  127. 127.
    Letfullin RR, Joenathan C, George TF, Zharov VP (2006) Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomed 1:473–480CrossRefGoogle Scholar
  128. 128.
    Kloss FR, Gassner R, Preiner J, Ebner A, Larsson K, Hachl O, Tuli T, Rasse M, Moser D, Laimer K, Nickel EA, Laschober G, Brunauer R, Klima G, Hinterdorfer P, Steinmuller-Nethl D, Lepperdinger G (2008) The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomat 29:2433–2442CrossRefGoogle Scholar
  129. 129.
    Huang HJ, Pierstorff E, Osawa E et al (2008) Protein-mediated as-sembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2:203–212CrossRefGoogle Scholar
  130. 130.
    Zhu Y, Li J, Li W et al (2012) The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2:302–312CrossRefGoogle Scholar
  131. 131.
    Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80CrossRefGoogle Scholar
  132. 132.
    Zhang L, Sirivisoot S, Balasundaram G, Webster TJ (2010) In: Basu B, Katti D, Kumar A (eds) Advanced biomaterials: fundamentals, processing and applications. Wiley, New Jersey (ISBN: 978-04-701-9340-2)Google Scholar
  133. 133.
    Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRefGoogle Scholar
  134. 134.
    Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomat 9:7591–7621CrossRefGoogle Scholar
  135. 135.
    Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291–301CrossRefGoogle Scholar
  136. 136.
    Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Nair LS, Allcock HR, Laurencin CT (2008) Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromol 9:1818–1825CrossRefGoogle Scholar
  137. 137.
    Sattler KD (2010) Handbook of nanophysics: nanomedicine and nanorobotics. CRC Press, Taylor & Francis Group, US (ISBN 9781420075465)Google Scholar
  138. 138.
    Webster TJ, Hellenmeyer EL, Price RL (2005) Increased osteoblast functions on theta + delta nanofiber alumina. Biomat 26:953–960CrossRefGoogle Scholar
  139. 139.
    Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ (2008) Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomed 3:323–333Google Scholar
  140. 140.
    Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R (2002) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. Biomed Mater Res 59:499–506CrossRefGoogle Scholar
  141. 141.
    Hartmann M, Betz P, Sun Y, Gorb SN, Lindhorst TK, Krueger A (2012) Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. Chemistry 18:6485–6492CrossRefGoogle Scholar
  142. 142.
    Wehling J, Dringen R, Zare RN, Maas M, Rezwan K (2014) Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8:6475–6483CrossRefGoogle Scholar
  143. 143.
    Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L (2011) DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5:2376–2384CrossRefGoogle Scholar
  144. 144.
    Williams OA, Hees J, Dieker Ch, Jäger W, Kirste L, Nebel ChE (2010) Size-dependent reactivity of diamond nanoparticles. ACS Nano 4:4824–4830CrossRefGoogle Scholar
  145. 145.
    Zhang XY, Hu WB, Li J, Tao L, Wei Y (2012) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Tox Res 1:62–68CrossRefGoogle Scholar
  146. 146.
    Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16:2124–2128CrossRefGoogle Scholar
  147. 147.
    Lin Ch-W, Ju Ch-P, Lin J-HCh (2004) Comparison among mechanical properties of investment-cast c.p. Ti, Ti–6Al–7Nb and Ti–15Mo–1Bi Alloys. Mater T Jim 45:3028–3032CrossRefGoogle Scholar
  148. 148.
    Henriques B, Gasik M, Souza JCM, Nascimento RM, Soares D, Silva FS (2014) Mechanical and thermal properties of hot pressed CoCrMo–porcelain composites developed for prosthetic dentistry. J Mech Behav Biomed 30:103–110CrossRefGoogle Scholar
  149. 149.
    *Henry D (2009) Materials and coatings for medical devices: cardiovascular. ASM International, Materials Park (ISBN-13: 978-1-61503-000-2)Google Scholar
  150. 150.
    Ivanova EP, Bazaka K, Crawford RJ (2014) In new functional biomaterials for medicine and healthcare. Woodhead Publishing (ISBN: 9781782422655)Google Scholar
  151. 151.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Biomaterials science: an introduction to materials in medicine, 3rd ed. Academic Press (ISBN 9780123746269)Google Scholar
  152. 152.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224CrossRefGoogle Scholar
  153. 153.
    Korner C, Singer R (2000) Processing of metal foams–challenges and opportunities. Adv Eng Mater 2:159–165CrossRefGoogle Scholar
  154. 154.
    Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Progr Mater Sci 46:559–632CrossRefGoogle Scholar
  155. 155.
    Oh IH, Nomura N, Masahashi N, Hanada S (2003) Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49:1197–1202CrossRefGoogle Scholar
  156. 156.
    Martell JM, Pierson RH III, Jacobs JJ, Rosenberg AG, Maley M, Galante JO (1993) Primary total hip reconstruction with a titanium fibercoated prosthesis inserted without cement. J Bone Joint Surg Am 75:554–571CrossRefGoogle Scholar
  157. 157.
    Bram M (2000) High-porosity titanium, stainless steel, and superalloy parts. Adv Eng Mater 2:196–199CrossRefGoogle Scholar
  158. 158.
    Li JP, Li SH, de Groot K, Layrolle P (2002) Preparation and characterization of porous titanium. Key Eng Mater 218:51–54Google Scholar
  159. 159.
    Li BY, Rong LJ, Li YY, Gjunter VE (2000) A recent development in producing porous NiTi shape memory alloys. Intermetallics 8:881–884CrossRefGoogle Scholar
  160. 160.
    Ducheyne P, Martens M (1986) Orderly oriented wire meshes as porous coatings on orthopaedic implants. I: morphology. Clin Mater 1:59–67CrossRefGoogle Scholar
  161. 161.
    Bobyn J, Hacking S, Chan S, Toh K, Krygier J, Tanzer M (1999) Characterization of a new porous tantalum biomaterial for reconstructive orthopaedics. A Scientific Exhibit at the Annual AAOS, AnaheinCAGoogle Scholar
  162. 162.
    Markaki AE, Clyne TW (2004) Magneto-mechanical bone growth stimulation by actuation of highly porous ferromagnetic fibre arrays. In: SPIE international symposium of smart materials, and micro-smart systems, biomedical applications of micro and nanoengineering II. Australia, SydneyGoogle Scholar
  163. 163.
    Thieme M, Wieters KP, Bergner F, Scharnweber D, Worch H, Ndop J, Kim TJ, Grill W (2001) Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci Mater Med 12:225–231CrossRefGoogle Scholar
  164. 164.
    Okazaki K, Lee WH, Kim DK, Kopczyk RA (1991) Physical characteristics of Ti–6A1–4V implants fabricated by electro discharge compaction. J Biomed Mater Res 25(12):1417–1429CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Tomáš Kovářík
    • 1
    Email author
  • Tomáš Křenek
    • 1
  • Petr Bělský
    • 1
  • Jaroslav Šesták
    • 1
    • 2
  1. 1.New Technologies Research Centre (NTC-ZČU)University of West BohemiaPilsenCzech Republic
  2. 2.Division of Solid-State Physics Institute of Physics v.v.i., Czech Academy of SciencesPragueCzech Republic

Personalised recommendations