Skip to main content

Thermal Insulation and Porosity—From Macro- to Nanoscale

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

Porosity of textiles is one of the main factors influencing their thermal conductivity and insulation. Porosity in textile fabrics is the combination of fiber porosity, yarn packing density, and voids due to fabric construction. It is shown that assemblies from very fine fibers tend to suppress radiation and convection heat transfers because of huge total surface area, which restricts the free flow of air passing through them. For effective thermal insulation especially at low temperatures, it should be selected sufficiently high thickness of textile layer as well. Porosity is therefore decisive parameter for the evaluation of thermal comfort expressed in special units “clo.” The main aim of this chapter is the prediction of the effect of porosity of fabrics and fibers on the thermal conductivity and insulation. The changes of thermal comfort due to the use of hollow fibers and multilayer corrugated nonwovens are described. The thermal properties of highly porous aerogel structures are discussed. Enhancement of insulation by their inclusion into textiles is investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15:2441–2458

    Article  Google Scholar 

  2. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I. Problem formulations. J Food Eng 80:80–95

    Article  Google Scholar 

  3. Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53:717–725

    Article  Google Scholar 

  4. Venkataraman M, Mishra R, Kotresh T M, Militky J and Jamshaid H (2016) Aerogel for thermal insulation in high-performance textiles, Text Prog 48(2):55–118

    Google Scholar 

  5. Pl Gagge A et al (1941) A practical system of units for the description of heat exchange of man with his environment. Science 94:428–430

    Article  Google Scholar 

  6. Petrulis D (2004) Fundamental study of the effect of the fiber wall thickness on the structure of polyamide and polypropylene hollow fibers. J Appl Polym Sci 92:2017–2022

    Article  CAS  Google Scholar 

  7. Lu X, Caps R, Fricke J et al (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non-Cryst Solids 188:226–234

    Article  CAS  Google Scholar 

  8. Fricke J, Tillotson T (1997) Aerogels: Production, characterization and applications. Thin Solid Films 297:212–223

    Article  CAS  Google Scholar 

  9. Woignier T, Phalippou J (1987) Skeletal density of silica aerogels. J Non-Cryst Solids 93:17–21

    Article  CAS  Google Scholar 

  10. Lu X, Arduinischuster MC, Kuhn J et al (1992) Thermal-conductivity of monolithic organic aerogels. Science 255:971–972

    Article  CAS  Google Scholar 

  11. Wei GS, Liu YS, Zhang XX et al (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  CAS  Google Scholar 

  12. Fu B, Luo H, Wang F et al (2011) Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel. J Non-Cryst Solids 357:2063–2074

    Article  CAS  Google Scholar 

  13. Xiao X, Streiter R, Ruan G et al (2000) Modelling and simulation for dielectric constant of aerogel. Microelectron Eng 54:295–301

    Article  CAS  Google Scholar 

  14. Chen ZQ, Cheng P, Hsu CTA (2000) Theoretical and experimental study on stagnant thermal conductivity of porous media. Int Commun Heat Mass 27:601–610

    Article  CAS  Google Scholar 

  15. Fei H, Hao X, Li Y (2005) Study on thermal properties of aerogels. Mater Rev 19:20–22

    Google Scholar 

  16. Li SY, Chu HS, Yan WM (2008) Numerical study of phonon radiative transfer in porous nanostructures. Int J Heat Mass Transf 51:3924–3931

    Article  CAS  Google Scholar 

  17. Lee OJ, Lee KH, Yim TJ et al (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292

    Article  CAS  Google Scholar 

  18. Liu H, Li Y, Zhao X, Tao W (2015) Study on unit cell models and the effective thermal conductivities of silica aerogel. J Nanosci Nanotechno 15(4):3218–3223

    Google Scholar 

  19. Zeng SQ, Hunt A, Greif R (1995) Mean free-path and apparent thermal-conductivity of a gas in a porous-medium. J Heat Trans-Transf ASME 117:758–761

    Article  CAS  Google Scholar 

  20. Zeng SQ, Hunt A, Greif R (1995) Transport-properties of gas in silica aerogel. J Non-Cryst Solids 186:264–270

    Article  CAS  Google Scholar 

  21. Hrubesh LW, Pekala RW (1994) Thermal-properties of organic and inorganic aerogels. J Mater Res 9:731–738

    Article  CAS  Google Scholar 

  22. Gross J, Fricke J, Pekala RW et al (1992) Elastic nonlinearity of aerogels. Phys Rev B45:12774–12777

    Article  Google Scholar 

  23. Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300

    Article  CAS  Google Scholar 

  24. Swimm K, Reichenauer G, Vidi S et al (2009) Gas pressure dependence of the heat transport in porous solids. Int J Thermophys 30:1329–1342

    Article  CAS  Google Scholar 

  25. Hemberger F, Weis S, Reichenauer G et al (2009) Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys 30:1357–1371

    Article  CAS  Google Scholar 

  26. Zhao JJ, Duan YY, Wang XD et al (2012) A 3-D numerical heat transfer model for silica aerogels based on the aggregate structure. J Non-Cryst Solids 358:1287–1297

    Article  CAS  Google Scholar 

  27. Zeng JS, Greif QR, Stevens P (1996) et al. Effective optical constants n and k and extinction coefficient of silica aerogel. J Mater Res 11:687–693

    Article  CAS  Google Scholar 

  28. Deng ZS, Wang J, Wu AM et al (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  29. Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 14:121–136

    Article  Google Scholar 

  30. Cunnington GR, Lee SC (1996) Radiative properties of fibrous insulations: theory versus experiment. J Thermophys Heat Transf 10:460–466

    Article  CAS  Google Scholar 

  31. Rozek Z et al (2008) Potential applications of nanofiber textile covered by carbon coatings. J Achievements Mater Manufacturing Eng 27:35–38

    Google Scholar 

  32. Li Y, Holcombe BV (1998) Mathematical simulation of heat and moisture transfer in a human-clothing-environment system. Text Res J 68:389–397

    Google Scholar 

  33. Fohr JP, Treguier G (2002) Dynamic heat and water transfer through layered fabrics. Text Res J 72:1–12

    Article  CAS  Google Scholar 

  34. Sukigara SHY, Fujimoto T (2003) Compression and thermal properties of recycled fiber assemblies. Text Res J 73:310–315

    Article  CAS  Google Scholar 

  35. Reim M et al (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79:131–139

    Article  CAS  Google Scholar 

  36. Venkataraman M, Mishra R, Jasikova D, Kotresh TM, Militky J. Thermodynamics of aerogel treated nonwoven fabrics at subzero temperatures. J Ind Text (in print)

    Google Scholar 

  37. Warrier P, Yuan YH, Beck MP et al (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AIChE J 56:3243–3256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Křemenáková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Křemenáková, D., Militký, J., Venkataraman, M., Mishra, R. (2017). Thermal Insulation and Porosity—From Macro- to Nanoscale. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_20

Download citation

Publish with us

Policies and ethics