Advertisement

Thermal Insulation and Porosity—From Macro- to Nanoscale

  • Dana KřemenákováEmail author
  • Jiří Militký
  • Mohanapriya Venkataraman
  • Rajesh Mishra
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

Porosity of textiles is one of the main factors influencing their thermal conductivity and insulation. Porosity in textile fabrics is the combination of fiber porosity, yarn packing density, and voids due to fabric construction. It is shown that assemblies from very fine fibers tend to suppress radiation and convection heat transfers because of huge total surface area, which restricts the free flow of air passing through them. For effective thermal insulation especially at low temperatures, it should be selected sufficiently high thickness of textile layer as well. Porosity is therefore decisive parameter for the evaluation of thermal comfort expressed in special units “clo.” The main aim of this chapter is the prediction of the effect of porosity of fabrics and fibers on the thermal conductivity and insulation. The changes of thermal comfort due to the use of hollow fibers and multilayer corrugated nonwovens are described. The thermal properties of highly porous aerogel structures are discussed. Enhancement of insulation by their inclusion into textiles is investigated as well.

Keywords

Thermal Conductivity Thermal Insulation Thermal Comfort Textile Layer Silica Aerogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15:2441–2458CrossRefGoogle Scholar
  2. 2.
    Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I. Problem formulations. J Food Eng 80:80–95CrossRefGoogle Scholar
  3. 3.
    Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53:717–725CrossRefGoogle Scholar
  4. 4.
    Venkataraman M, Mishra R, Kotresh T M, Militky J and Jamshaid H (2016) Aerogel for thermal insulation in high-performance textiles, Text Prog 48(2):55–118Google Scholar
  5. 5.
    Pl Gagge A et al (1941) A practical system of units for the description of heat exchange of man with his environment. Science 94:428–430CrossRefGoogle Scholar
  6. 6.
    Petrulis D (2004) Fundamental study of the effect of the fiber wall thickness on the structure of polyamide and polypropylene hollow fibers. J Appl Polym Sci 92:2017–2022CrossRefGoogle Scholar
  7. 7.
    Lu X, Caps R, Fricke J et al (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non-Cryst Solids 188:226–234CrossRefGoogle Scholar
  8. 8.
    Fricke J, Tillotson T (1997) Aerogels: Production, characterization and applications. Thin Solid Films 297:212–223CrossRefGoogle Scholar
  9. 9.
    Woignier T, Phalippou J (1987) Skeletal density of silica aerogels. J Non-Cryst Solids 93:17–21CrossRefGoogle Scholar
  10. 10.
    Lu X, Arduinischuster MC, Kuhn J et al (1992) Thermal-conductivity of monolithic organic aerogels. Science 255:971–972CrossRefGoogle Scholar
  11. 11.
    Wei GS, Liu YS, Zhang XX et al (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366CrossRefGoogle Scholar
  12. 12.
    Fu B, Luo H, Wang F et al (2011) Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel. J Non-Cryst Solids 357:2063–2074CrossRefGoogle Scholar
  13. 13.
    Xiao X, Streiter R, Ruan G et al (2000) Modelling and simulation for dielectric constant of aerogel. Microelectron Eng 54:295–301CrossRefGoogle Scholar
  14. 14.
    Chen ZQ, Cheng P, Hsu CTA (2000) Theoretical and experimental study on stagnant thermal conductivity of porous media. Int Commun Heat Mass 27:601–610CrossRefGoogle Scholar
  15. 15.
    Fei H, Hao X, Li Y (2005) Study on thermal properties of aerogels. Mater Rev 19:20–22Google Scholar
  16. 16.
    Li SY, Chu HS, Yan WM (2008) Numerical study of phonon radiative transfer in porous nanostructures. Int J Heat Mass Transf 51:3924–3931CrossRefGoogle Scholar
  17. 17.
    Lee OJ, Lee KH, Yim TJ et al (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRefGoogle Scholar
  18. 18.
    Liu H, Li Y, Zhao X, Tao W (2015) Study on unit cell models and the effective thermal conductivities of silica aerogel. J Nanosci Nanotechno 15(4):3218–3223Google Scholar
  19. 19.
    Zeng SQ, Hunt A, Greif R (1995) Mean free-path and apparent thermal-conductivity of a gas in a porous-medium. J Heat Trans-Transf ASME 117:758–761CrossRefGoogle Scholar
  20. 20.
    Zeng SQ, Hunt A, Greif R (1995) Transport-properties of gas in silica aerogel. J Non-Cryst Solids 186:264–270CrossRefGoogle Scholar
  21. 21.
    Hrubesh LW, Pekala RW (1994) Thermal-properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRefGoogle Scholar
  22. 22.
    Gross J, Fricke J, Pekala RW et al (1992) Elastic nonlinearity of aerogels. Phys Rev B45:12774–12777CrossRefGoogle Scholar
  23. 23.
    Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRefGoogle Scholar
  24. 24.
    Swimm K, Reichenauer G, Vidi S et al (2009) Gas pressure dependence of the heat transport in porous solids. Int J Thermophys 30:1329–1342CrossRefGoogle Scholar
  25. 25.
    Hemberger F, Weis S, Reichenauer G et al (2009) Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys 30:1357–1371CrossRefGoogle Scholar
  26. 26.
    Zhao JJ, Duan YY, Wang XD et al (2012) A 3-D numerical heat transfer model for silica aerogels based on the aggregate structure. J Non-Cryst Solids 358:1287–1297CrossRefGoogle Scholar
  27. 27.
    Zeng JS, Greif QR, Stevens P (1996) et al. Effective optical constants n and k and extinction coefficient of silica aerogel. J Mater Res 11:687–693CrossRefGoogle Scholar
  28. 28.
    Deng ZS, Wang J, Wu AM et al (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104CrossRefGoogle Scholar
  29. 29.
    Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 14:121–136CrossRefGoogle Scholar
  30. 30.
    Cunnington GR, Lee SC (1996) Radiative properties of fibrous insulations: theory versus experiment. J Thermophys Heat Transf 10:460–466CrossRefGoogle Scholar
  31. 31.
    Rozek Z et al (2008) Potential applications of nanofiber textile covered by carbon coatings. J Achievements Mater Manufacturing Eng 27:35–38Google Scholar
  32. 32.
    Li Y, Holcombe BV (1998) Mathematical simulation of heat and moisture transfer in a human-clothing-environment system. Text Res J 68:389–397Google Scholar
  33. 33.
    Fohr JP, Treguier G (2002) Dynamic heat and water transfer through layered fabrics. Text Res J 72:1–12CrossRefGoogle Scholar
  34. 34.
    Sukigara SHY, Fujimoto T (2003) Compression and thermal properties of recycled fiber assemblies. Text Res J 73:310–315CrossRefGoogle Scholar
  35. 35.
    Reim M et al (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79:131–139CrossRefGoogle Scholar
  36. 36.
    Venkataraman M, Mishra R, Jasikova D, Kotresh TM, Militky J. Thermodynamics of aerogel treated nonwoven fabrics at subzero temperatures. J Ind Text (in print)Google Scholar
  37. 37.
    Warrier P, Yuan YH, Beck MP et al (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AIChE J 56:3243–3256CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Dana Křemenáková
    • 1
    Email author
  • Jiří Militký
    • 1
  • Mohanapriya Venkataraman
    • 1
    • 2
  • Rajesh Mishra
    • 1
  1. 1.Department of Material Engineering, Faculty of Textile EngineeringTechnical University of LiberecLiberecCzech Republic
  2. 2.Department of Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations