Advertisement

Sample Controlled Thermal Analysis (SCTA) as a Promising Tool for Kinetic Characterization of Solid-State Reaction and Controlled Material Synthesis

  • Jose M. CriadoEmail author
  • Luis A. Pérez-Maqueda
  • Nobuyoshi Koga
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

The historical development of the thermal analysis methods that imply an intelligent control of the reaction temperature by the own sample (SCTA) is outlined. It has been shown that the precise control of the reaction rate involved in SCTA enables a control, either direct or indirect, of both the partial pressure of the gases generated/consumed by the reaction and the heat evolution/adsorption rate associated to the reaction. This control allows to minimize the influences of heat and mass transfer phenomena and to obtain real kinetic parameters of the forward reaction that occur under the conditions far from the equilibrium. Moreover, it is shown that the shape of αT plots obtained under constant rate of transformation (CRTA) is strongly dependent on the kinetic model, while the αT plots obtained using the conventional linear nonisothermal method represent a sigmoidal shape irrespective of the kinetic model. Thus, CRTA has a considerably higher resolution power for discriminating the kinetic model obeyed by the reaction. The applications of SCTA methods both for the kinetic analysis of solid-state reactions and for the synthesis of materials with controlled texture and/or structure have been reviewed. The chapter contains 202 references.

Keywords

Thermal Decomposition Residual Pressure Thermal Dehydration Heat Transfer Phenomenon Mass Transfer Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Smith CS (1940) A simple method of thermal analysis permitting quantitative measurements of specific and latent heats. Trans AIME 137:236–245Google Scholar
  2. 2.
    Charsley EL, Laye PG, Parkes GMB, Rooney JJ (2010) Development and applications of a sample controlled DSC system. J Therm Anal Calorim 105(2):699–703CrossRefGoogle Scholar
  3. 3.
    Saccone A, Macciò D, Robinson JAJ, Hayes FH, Ferro R (2001) Smith thermal analysis of selected Pr–Mg alloys. J Alloys Compd 317–318:497–502CrossRefGoogle Scholar
  4. 4.
    Rouquerol J (1970) L’analyse thermique a vitesse de decomposition constante. J Therm Anal 2(2):123–140CrossRefGoogle Scholar
  5. 5.
    Rouquerol J (1997) Controlled rate evolved gas analysis: 35 years of rewarding services. Thermochim Acta 300(1–2):247–253CrossRefGoogle Scholar
  6. 6.
    Rouquerol J (1964) Methode d’analyse thermique sous faible pression et a vitesse de decomposition constante. Bull Soc Chim Fr:31–32Google Scholar
  7. 7.
    Paulik J, Paulik F (1971) “Quasi-isothermal” thermogravimetry. Anal Chim Acta 56(2):328–331CrossRefGoogle Scholar
  8. 8.
    Paulik F, Paulik J (1986) Thermoanalytical examination under quasi-isothermal—quasi-isobaric conditions. Thermochim Acta 100(1):23–59CrossRefGoogle Scholar
  9. 9.
    Paulik F (1999) Thermal analysis under quasi-isothermal–quasi-isobaric conditions. Thermochim Acta 340–341:105–116CrossRefGoogle Scholar
  10. 10.
    Barnes PA, Parkes GMB, Charsley EL (1994) High-performance evolved gas analysis system for catalyst characterization. Anal Chem 66(14):2226–2231CrossRefGoogle Scholar
  11. 11.
    Diánez MJ, Pérez-Maqueda LA, Criado JM (2004) Direct use of the mass output of a thermobalance for controlling the reaction rate of solid-state reactions. Rev Sci Instrum 75(8):2620–2624CrossRefGoogle Scholar
  12. 12.
    Criado JM, Pérez-Maqueda LA, Diánez MJ, Sánchez-Jiménez PE (2007) Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument. J Therm Anal Calorim 87(1):297–300CrossRefGoogle Scholar
  13. 13.
    Koga N, Yamada S (2005) Influences of product gases on the kinetics of thermal decomposition of synthetic malachite evaluated by controlled rate evolved gas analysis coupled with thermogravimetry. Int J Chem Kinet 37(6):346–3549CrossRefGoogle Scholar
  14. 14.
    Sørensen OT (1981) Quasi-isothermal methods in thermal analysis. Thermochim Acta 50(1–3):163–175CrossRefGoogle Scholar
  15. 15.
    Parkes GMB, Barnes PA, Charsley EL (1998) Gas concentration programming—a new approach to sample controlled thermal analysis. Thermochim Acta 320(1–2):297–301CrossRefGoogle Scholar
  16. 16.
    Ortega A, Pérez-Maqueda LA, Criado JM (1994) Simultaneous determination of the activation energy and the reaction kinetic model from the analysis of a single curve obtained by a novel method. J Therm Anal 42(2–3):551–557CrossRefGoogle Scholar
  17. 17.
    Ortega A, Pérez-Maqueda LA, Criado JM (1994) Shape analysis of the α–T curves obtained by CRTA with constant acceleration of the transformation. Thermochim Acta 239:171–180CrossRefGoogle Scholar
  18. 18.
    Gill PS, Sauerbrunn SR, Crowe BS (1992) High resolution thermogravimetry. J Therm Anal 38(3):255–266CrossRefGoogle Scholar
  19. 19.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM (2010) Quantitative characterization of multicomponent polymers by sample-controlled thermal analysis. Anal Chem 82(21):8875–8880CrossRefGoogle Scholar
  20. 20.
    Wang FC-Y (2000) Polymer additive analysis by pyrolysis–gas chromatography. J Chromatogr A 891(2):325–336CrossRefGoogle Scholar
  21. 21.
    Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Gimeno Adelantado JV (2009) Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem 81(8):3180–3187CrossRefGoogle Scholar
  22. 22.
    Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE, Perejón A (2013) Kinetic studies in solid state reactions by sample-controlled methods and advanced analysis procedures. J Therm Anal Calorim 113(3):1447–1453CrossRefGoogle Scholar
  23. 23.
    Koga N (2015) Kinetic characterization of the inorganic solid-state reactions using thermal analysis. Netsu Sokutei 42(1):2–9Google Scholar
  24. 24.
    Koga N, Šesták J, Simon P (2013) Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Šesták J, Simon P (eds) Thermal analysis of micro, nano- and non-crystalline materials. Springer, Berlin, pp 1–28Google Scholar
  25. 25.
    Koga N (2013) Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim 113(3):1527–1541CrossRefGoogle Scholar
  26. 26.
    Koga N, Tanaka H (2002) A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta 388(1–2):41–61CrossRefGoogle Scholar
  27. 27.
    Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci 95(3):472–498CrossRefGoogle Scholar
  28. 28.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19CrossRefGoogle Scholar
  29. 29.
    Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ (2014) ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23CrossRefGoogle Scholar
  30. 30.
    Koga N, Maruta S, Kimura T, Yamada S (2011) Phenomenological kinetics of the thermal decomposition of sodium hydrogencarbonate. J Phys Chem A 115(50):14417–14429CrossRefGoogle Scholar
  31. 31.
    Reading M (1992) Controlled rate thermal analysis and beyond. In: Charsley EL, Warrington SB (eds) Thermal analysis-techniques and applications. Royal Society of Chemistry, Cambridge, pp 126–155Google Scholar
  32. 32.
    Reading M (1998) Controlled rate thermal analysis and related techniques. In: Brown ME (ed) Handbook of thermal analysis and calorimetry, vol 1. Elsevier, Amsterdam, pp 423–443Google Scholar
  33. 33.
    Ozawa T (1986) Applicability of Friedman plot. J Therm Anal 31:547–551CrossRefGoogle Scholar
  34. 34.
    Koga N (1995) Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta 258:145–159CrossRefGoogle Scholar
  35. 35.
    Koga N, Kimizu T (2008) Thermal decomposition of indium(III) hydroxide prepared by the microwave-assisted hydrothermal method. J Am Ceram Soc 91(12):4052–4058CrossRefGoogle Scholar
  36. 36.
    Wada T, Koga N (2013) Kinetics and mechanism of the thermal decomposition of sodium percarbonate: role of the surface product layer. J Phys Chem A 117(9):1880–1889CrossRefGoogle Scholar
  37. 37.
    Friedman HL (1964) Kinetics of thermal degradation of cha-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6:183–195CrossRefGoogle Scholar
  38. 38.
    Garner WE (1955) Chemistry of the solid state. Butterworths, LondonGoogle Scholar
  39. 39.
    Criado JM, Rouquerol F, Rouquerol J (1980) Thermal decomposition reactions in solids—comparison of the constant decomposition rate thermal analysis with the conventional TG method. Thermochim Acta 38(1):109–115CrossRefGoogle Scholar
  40. 40.
    Criado JM (1980) Study of the thermal decomposition of double strontium and barium carbonates using a new technique: constant rate thermal analysis (CRTA). Mater Sci Monogr 6:1096–2001Google Scholar
  41. 41.
    Criado JM (1982) Determination of the mechanism of thermal decomposition of MnCO3, CdCO3, and PbCO3 by using the TG and the cyclic and constant decomposition rate of thermal analysis. In: Miller B (ed) Thermal analysis, The 7th international conference on thermal analysis, 1982. Wiley, pp 99–105Google Scholar
  42. 42.
    Reading M, Dollimore D, Rouquerol J, Rouquerol F (1984) The measurement of meaningful activation energies. J Therm Anal 29(4):775–785CrossRefGoogle Scholar
  43. 43.
    Criado JM, Ortega A, Rouquerol J, Rouquerol F (1987) A new method of thermal analysis: thermal analysis under controlled rate. II Kinetic analysis. Bol Soc Esp Cerám 25:3–11Google Scholar
  44. 44.
    Ortega A, Akhouayri S, Rouquerol F, Rouquerol J (1990) On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic studies. Thermochim Acta 163:25–32CrossRefGoogle Scholar
  45. 45.
    Criado JM, Dianez MJ, Macias M, Paradas MC (1990) Crystalline structure and thermal stability of double strontium and barium carbonates. Thermochim Acta 171:229–238CrossRefGoogle Scholar
  46. 46.
    Reading M, Dollimore D, Whitehead R (1991) The measurement of meaningful kinetic parameters for solid state decomposition reactions. J Therm Anal 37(9):2165–2188CrossRefGoogle Scholar
  47. 47.
    Criado JM, Ortega A (1991) Kinetic study of thermal decomposition of dolomite by controlled transformation rate thermal analysis (CRTA) and TG. J Therm Anal 37(10):2369–2375CrossRefGoogle Scholar
  48. 48.
    Málek J, Šesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A (1992) Possibilities of two non-isothermal procedures (temperature- or rate-controlled) for kinetical studies. J Therm Anal 38(1–2):71–87CrossRefGoogle Scholar
  49. 49.
    Ortega A, Akhouayri S, Rouquerol F, Rouquerol J (1994) On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic studies. Part 3. Discrimination of the reaction mechanism of dolomite thermolysis. Thermochim Acta 247(2):321–327CrossRefGoogle Scholar
  50. 50.
    Laureiro Y, Jerez A, Rouquérol F, Rouquérol J (1996) Dehydration kinetics of Wyoming montmorillonite studied by controlled transformation rate thermal analysis. Thermochim Acta 278:165–173CrossRefGoogle Scholar
  51. 51.
    Koga N, Criado JM (1998) The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by constant rate thermal analysis (CRTA) under vacuum. Int J Chem Kinet 30(10):737–744CrossRefGoogle Scholar
  52. 52.
    Hatakeyama T, Zhenhai L (1998) Handbook of thermal analysis. Wiley, ChichesterGoogle Scholar
  53. 53.
    Finaru A, Salageanu I, Segal E (2000) Non-isothermal kinetic study of the heterogeneous thermal decomposition of a Mannich compound. J Therm Anal Calorim 61(1):239–242CrossRefGoogle Scholar
  54. 54.
    Koga N, Criado JM, Tanaka H (2000) Kinetic analysis of inorganic solid-state reactions by controlled rate thermal analysis. Netsu Sokutei 27(3):128–140Google Scholar
  55. 55.
    Criado JM, Ortega A, Rouquerol J, Rouquerol F (1994) Influence of pressure on the shape of TG and controlled transformation rate thermal analysis (CRTA) traces. Thermochim Acta 240:247–256CrossRefGoogle Scholar
  56. 56.
    Criado J, González M, Málek J, Ortega A (1995) The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate. Thermochim Acta 254:121–127CrossRefGoogle Scholar
  57. 57.
    Rouquerol F, Laureiro Y, Rouquerol J (1993) Influence of water vapour pressure on the thermal dehydration of lithium sulphate monohydrate. Solid State Ionics 63–65:363–366CrossRefGoogle Scholar
  58. 58.
    Bordère S, Rouquérol F, Llewellyn PL, Rouquérol J (1996) Unexpected effect of pressure on the dehydration kinetics of uranyl nitrate trihydrate: an example of a Smith-Topley effect. Thermochim Acta 282–283:1–11CrossRefGoogle Scholar
  59. 59.
    Pérez-Maqueda LA, Criado JM, Gotor FJ (2002) Controlled rate thermal analysis commanded by mass spectrometry for studying the kinetics of thermal decomposition of very stable solids. Int J Chem Kinet 34(3):184–192CrossRefGoogle Scholar
  60. 60.
    Koga N, Criado JM, Tanaka H (1999) Apparent kinetic behavior of the thermal decomposition of synthetic malachite. Thermochim Acta 340–341:387–394CrossRefGoogle Scholar
  61. 61.
    Yamada S, Koga N (2005) Kinetics of the thermal decomposition of sodium hydrogen carbonate evaluated by controlled rate evolved gas analysis coupled with thermogravimetry. Thermochim Acta 431(1–2):38–43CrossRefGoogle Scholar
  62. 62.
    Koga N, Criado JM, Tanaka H (2000) Kinetic analysis of the thermal decomposition of synthetic malachite by CRTA. J Therm Anal Calorim 60(3):943–954CrossRefGoogle Scholar
  63. 63.
    Yamada S, Tsukumo E, Koga N (2009) Influences of evolved gases on the thermal decomposition of zinc carbonate hydroxide evaluated by controlled rate evolved gas analysis coupled with TG. J Therm Anal Calorim 95(2):489–493CrossRefGoogle Scholar
  64. 64.
    Paulik F (1995) Special trends in thermal analysis. Wiley, ChichesterGoogle Scholar
  65. 65.
    Rouquerol J (1985) Recent developments in the calorimetric and thermoanalytical approaches to problems related to fossil-fuels (genesis, extraction and use). Pure Appl Chem 57(1):69–77CrossRefGoogle Scholar
  66. 66.
    Rouquerol F, Rouquerol J (1971) Activation energy of a thermolysis: conditions for significant measurements under very low pressure. In: Wiedemann HG (ed) Thermal analysis, Proceedings of the 3rd international conference on thermal analysis, Davos, 1971. Birkhauser Verlag, pp 373–377Google Scholar
  67. 67.
    Rouquerol F, Regnier S, Rouquerol J (1975) Activation energy of the dehydration of a silica gel between 200 and 1000 °C. In: Buzas I (ed) Thermal analysis, Proceedings of the 4th international conference on thermal analysis, Budapest, 1975, vol 1. Akademiai Kiadó and Heyden & Sons, pp 313–318Google Scholar
  68. 68.
    Reading M (1988) The kinetics of heterogeneous solid state decomposition reactions. Thermochim Acta 135:37–57CrossRefGoogle Scholar
  69. 69.
    Sørensen OT, Rouquerol J (2003) Sample controlled thermal analysis: origin, goals, multiple forms, applications and future. Kluwer, DordrechtCrossRefGoogle Scholar
  70. 70.
    Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244(1):1–20CrossRefGoogle Scholar
  71. 71.
    Criado JM, Ortega A, Gotor FJ (1990) Correlation between the shape of controlled-rate thermal analysis curves and the kinetics of solid-state reactions. Thermochim Acta 157:171–179CrossRefGoogle Scholar
  72. 72.
    Criado JM, Pérez-Maqueda LA (2003) SCTA and kinetics. In: Sørensen OT, Rouquerol J (eds) Sample controlled thermal analysis: origin, goals, multiple forms, applications and future. Kluwer, Dordrecht, pp 62–101CrossRefGoogle Scholar
  73. 73.
    Criado JM, Gonzalez M (1981) The method of calculation of kinetic parameters as a possible cause of apparent compensation effects. Thermochim Acta 46(2):201–207CrossRefGoogle Scholar
  74. 74.
    Tanaka H, Koga N (1988) Kinetic compensation effect between the isothermal and non-isothermal decomposition of solids. J Therm Anal 34(3):685–691CrossRefGoogle Scholar
  75. 75.
    Koga N, Tanaka H (1991) A kinetic compensation effect established for the thermal-decomposition of a solid. J Therm Anal 37(2):347–363CrossRefGoogle Scholar
  76. 76.
    Koga N, Šesták J (1991) Kinetic compensation effect as a mathematical consequence of the exponential rate-constant. Thermochim Acta 182(2):201–208CrossRefGoogle Scholar
  77. 77.
    Koga N, Šesták J (1991) Further aspects of the kinetic compensation effect. J Therm Anal 37(5):1103–1108CrossRefGoogle Scholar
  78. 78.
    Koga N, Šesták J, Málek J (1991) Distortion of the Arrhenius parameters by the inappropriate kinetic-model function. Thermochim Acta 188(2):333–336CrossRefGoogle Scholar
  79. 79.
    Málek J, Criado JM (1992) Empirical kinetic models in thermal analysis. Thermochim Acta 203:25–30CrossRefGoogle Scholar
  80. 80.
    Málek J (1992) The kinetic analysis of non-isothermal data. Thermochim Acta 200:257–269CrossRefGoogle Scholar
  81. 81.
    Gotor FJ, Criado JM, Málek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104(46):10777–10782CrossRefGoogle Scholar
  82. 82.
    Criado JM, Pérez-Maqueda LA, Gotor FJ, Malek J, Koga N (2003) A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim 72(3):901–906CrossRefGoogle Scholar
  83. 83.
    Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE (2006) Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A 110(45):12456–12462CrossRefGoogle Scholar
  84. 84.
    Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE, Diánez MJ (2015) Applications of sample-controlled thermal analysis (SCTA) to kinetic analysis and synthesis of materials. J Therm Anal Calorim 120(1):45–51CrossRefGoogle Scholar
  85. 85.
    Criado JM (1979) On the kinetic analysis of thermoanalytical diagrams obtained with the “quasi-isothermal” heating technique. Thermochim Acta 28(2):307–312CrossRefGoogle Scholar
  86. 86.
    Criado JM, Morales J (1976) Defects of thermogravimetric analysis for discerning between first order reactions and those taking place through the Avrami-Erofeev’s mechanism. Thermochim Acta 16:382–387CrossRefGoogle Scholar
  87. 87.
    Criado JM, Morales J (1980) On the evaluation of kinetic parameters from thermogravimetric curves. Thermochim Acta 41(1):125–127CrossRefGoogle Scholar
  88. 88.
    Criado JM, Dollimore D, Heal GR (1982) A critical study of the suitability of the Freeman and Carroll method for the kinetic analysis of reactions of thermal decomposition of solids. Thermochim Acta 54(1–2):159–165CrossRefGoogle Scholar
  89. 89.
    Flynn JH (1988) Thermal analysis kinetics—problems, pitfalls and how to deal with them. J Therm Anal 34(1):367–381CrossRefGoogle Scholar
  90. 90.
    Agrawal RK (1988) Analysis of irreversible complex chemical reactions and some observations on their overall activation energy. Thermochim Acta 128:185–208CrossRefGoogle Scholar
  91. 91.
    Vyazovkin S, Wight CA (1998) Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem 17(3):407–433CrossRefGoogle Scholar
  92. 92.
    Vyazovkin SV, Lesnikovich AI (1989) On the methods of solving the inverse problem of solid-phase reaction kinetics. J Therm Anal 35(7):2169–2188CrossRefGoogle Scholar
  93. 93.
    Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Thermochim Acta 355(1–2):125–143CrossRefGoogle Scholar
  94. 94.
    Pérez-Maqueda LA, Ortega A, Criado JM (1996) The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochim Acta 277:165–173CrossRefGoogle Scholar
  95. 95.
    Koga N, Criado JM (1997) Influence of the particle size distribution on the CRTA curves for the solid-state reactions of interface shrinkage. J Therm Anal 49(3):1477–1484CrossRefGoogle Scholar
  96. 96.
    Koga N, Criado JM (1998) Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc 81(11):2901–2909CrossRefGoogle Scholar
  97. 97.
    Criado JM (1981) On the determination of the activation energy of solid-state reactions from the maximum reaction rate of isothermal runs. J Therm Anal 21(1):155–157CrossRefGoogle Scholar
  98. 98.
    Tiernan MJ, Barnes PA, Parkes GMB (2001) Reduction of iron oxide catalysts: the investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques. J Phys Chem B 105(1):220–228CrossRefGoogle Scholar
  99. 99.
    Mampel KL (1940) Time conversion formulas for heterogeneous reactions at the phase boundaries of solid bodies I: the development of the mathematical method and the derivation of area conversion formulas. Z Phys Chem A 187:43–57Google Scholar
  100. 100.
    Prout EG, Tompkins FC (1944) The thermal decomposition of potassium permanganate. Trans Faraday Soc 40:488–497CrossRefGoogle Scholar
  101. 101.
    Prout EG, Tompkins FC (1946) The thermal decomposition of silver permanganate. Trans Faraday Soc 42(6–7):468–472CrossRefGoogle Scholar
  102. 102.
    Simha R, Wall LA (1952) Kinetics of chain depolymerization. J Phys Chem 56(6):707–715CrossRefGoogle Scholar
  103. 103.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab 95(5):733–739CrossRefGoogle Scholar
  104. 104.
    Criado JM, Ortega A, Real C (1987) Mecahnism of the thermal decomposition of anhydrous nickel nitrate. React Solids 4:93–103CrossRefGoogle Scholar
  105. 105.
    Paulik J, Paulik F (1981) Simultaneous thermoanalytical examinations by means of derivatograph. Wilson-Wilson’s Comprehensive Analytical Chemistry, vol XII. Elsevier, AmsterdamGoogle Scholar
  106. 106.
    Barnes PA, Parkes GMB, Brown DR, Charsley EL (1995) Applications of new high resolution evolved-gas analysis systems for the characterisation of catalysts using rate-controlled thermal analysis. Thermochim Acta 269–270:665–676CrossRefGoogle Scholar
  107. 107.
    Gomez F, Vast P, Llewellyn P, Rouquerol F (1997) Dehydroxylation mechanisms of polyphosphate glasses in relation to temperature and pressure. J Non-Cryst Solids 222:415–421CrossRefGoogle Scholar
  108. 108.
    Gomez F, Vast P, Llewellyn P, Rouquerol F (1997) Characterization of polyphosphate glasses preparation using CRTA. J Therm Anal 49(3):1171–1178CrossRefGoogle Scholar
  109. 109.
    Badens E, Llewellyn P, Fulconis JM, Jourdan C, Veesler S, Boistelle R, Rouquerol F (1998) Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J Solid State Chem 139(1):37–44CrossRefGoogle Scholar
  110. 110.
    Gomez F, Vast P, Baebieux F, Llewellyn P, Rouquerol F (1998) Controlled transformation rate thermal analysis: an inverse method allowing the characterisation of the thermal behaviour of polyphosphate glasses. High Temp.-High Pressures 30(5):575–580CrossRefGoogle Scholar
  111. 111.
    Fulconis JM, Morato F, Rouquerol F, Fourcade R, Feugier A, Rouquerol J (1999) CRTA study of the reduction of UO2F2 into UO2 by dry H2. J Therm Anal Calorim 56(3):1443–1446CrossRefGoogle Scholar
  112. 112.
    Ichihara S, Endo A, Arii T (2000) Analysis of thermal decomposition behaviors with consecutive reactions by TG. Thermochim Acta 360(2):179–188CrossRefGoogle Scholar
  113. 113.
    Fesenko EA, Barnes PA, Parkes GMB, Dawson EA, Tiernan MJ (2002) Catalyst characterisation and preparation using sample controlled thermal techniques—high resolution studies and the determination of the energetics of surface and bulk processes. Top Catal 19(3/4):283–301CrossRefGoogle Scholar
  114. 114.
    Fesenko EA, Barnes PA, Parkes GMB (2003) SCTA and catalysis. In: Sørensen OT, Rouquerol J (eds) Sample controlled thermal analysis: origin, goals, multiple forms, applications and future. Kluwer, Dordrecht, pp 174–225CrossRefGoogle Scholar
  115. 115.
    Tiernan MJ, Barnes PA, Parkes GMB (1999) New approach to the investigation of mechanisms and apparent activation energies for the reduction of metal oxides using constant reaction rate temperature-programmed reduction. J Phys Chem B 103(2):338–345CrossRefGoogle Scholar
  116. 116.
    Ogasawara H, Koga N (2014) Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction. J Phys Chem A 118(13):2401–2412CrossRefGoogle Scholar
  117. 117.
    Galwey AK, Hood WJ (1979) Thermal decomposition of sodium carbonate perhydrate in the solid state. J Phys Chem 83(14):1810–1815CrossRefGoogle Scholar
  118. 118.
    Koga N, Criado JM, Tanaka H (2002) A kinetic aspect of the thermal dehydration of dilithium tetraborate trihydrate. J Therm Anal Calorim 67(1):153–161CrossRefGoogle Scholar
  119. 119.
    Criado JM (1980) Determination of the mechanism of thermal decomposition reactions of solids by using the cyclic and constant decomposition rate thermal analysis method. In: Wiedemann HG (ed) Thermal analysis, Proceedings of the 6th international conference on thermal analysis, Bayruth, 1980. Brikhauser Verlag, Basel, pp 145–148Google Scholar
  120. 120.
    Dion P, Alcover JF, Bergaya F, Ortega A, Llewellyn PL, Rouquerol F (1998) Kinetic study by controlled-transformation rate thermal analysis of the dehydroxylation of kaolinite. Clay Miner 33(2):269–276CrossRefGoogle Scholar
  121. 121.
    Tiernan MJ, Barnes PA, Parkes GMB (1999) Use of solid insertion probe mass spectrometry and constant rate thermal analysis in the study of materials: determination of apparent activation energies and mechanisms of solid-state decomposition reactions. J Phys Chem B 103(33):6944–6949CrossRefGoogle Scholar
  122. 122.
    Parkes GM, Barnes PA, Charsley EL (1999) New concepts in sample controlled thermal analysis: resolution in the time and temperature domains. Anal Chem 71(13):2482–2487CrossRefGoogle Scholar
  123. 123.
    Barnes PA, Tiernan MJ, Parkes GMB (1999) Sample controlled thermal analysis: temperature programmed reduction of bulk and supported copper oxide. J Therm Anal Calorim 56(2):733–737CrossRefGoogle Scholar
  124. 124.
    Fesenko EA, Barnes PA, Parkes GMB, Brown DR, Naderi M (2001) A new approach to the study of the reactivity of solid-acid catalysts: the application of constant rate thermal analysis to the desorption and surface reaction of isopropylamine from NaY and HY Zeolites. J Phys Chem B 105(26):6178–6185CrossRefGoogle Scholar
  125. 125.
    Tiernan MJ, Fesenko EA, Barnes PA, Parkes GMB, Ronane M (2001) The application of CRTA and linear heating thermoanalytical techniques to the study of supported cobalt oxide methane combustion catalysts. Thermochim Acta 379(1–2):163–175CrossRefGoogle Scholar
  126. 126.
    Arii T, Fujii N (1997) Controlled-rate thermal analysis kinetic study in thermal dehydration of calcium sulfate dihydrate. J Anal Appl Pyrol 39(2):129–143CrossRefGoogle Scholar
  127. 127.
    Cai XE, Shen H, Zhang CH, Wang YX, Kong Z (2000) Application of constant reaction rate TG to the determination of kinetic parameters by Hi-Res TG. J Therm Anal Calorim 60(2):623–628CrossRefGoogle Scholar
  128. 128.
    Ortega A (1997) CRTA or TG? Thermochim Acta 298(1–2):205–214CrossRefGoogle Scholar
  129. 129.
    Rouquerol J (1989) Controlled transformation rate thermal analysis: the hidden face of thermal analysis. Thermochim Acta 144(2):209–224CrossRefGoogle Scholar
  130. 130.
    Ortega A, Akhouayri S, Rouquerol F, Rouquerol J (1994) On the suitability of controlled transformation rate thermal analysis (CRTA) for kinetic studies. Part 2. Comparison with conventional TG for the thermolysis of dolomite with different particle sizes. Thermochim Acta 235(2):197–204CrossRefGoogle Scholar
  131. 131.
    Reading M, Dollimore D (1994) The application of constant rate thermal analysis to the study of the thermal decomposition of copper hydroxy carbonate. Thermochim Acta 240:117–127CrossRefGoogle Scholar
  132. 132.
    Criado JM, Pérez-Maqueda LA (2005) Sample controlled thermal analysis and kinetics. J Therm Anal Calorim 80(1):27–33CrossRefGoogle Scholar
  133. 133.
    Nahdi K, Rouquerol F, Trabelsi Ayadi M (2009) Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA). Solid State Sci 11(5):1028–1034CrossRefGoogle Scholar
  134. 134.
    Gotor FJ, Macias M, Ortega A, Criado JM (2000) Comparative study of the kinetics of the thermal decomposition of synthetic and natural siderite samples. Phys Chem Miner 27(7):495–503CrossRefGoogle Scholar
  135. 135.
    Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2008) Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim 94(2):427–432CrossRefGoogle Scholar
  136. 136.
    Valverde JM, Sánchez-Jiménez PE, Perejon A, Pérez-Maqueda LA (2013) Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions. Appl Energy 108:108–120CrossRefGoogle Scholar
  137. 137.
    Valverde JM, Sánchez-Jiménez PE, Perejon A, Pérez-Maqueda LA (2013) Role of looping-calcination conditions on self-reactivation of thermally pretreated CO2 sorbents based on CaO. Energy Fuels 27(6):3373–3384CrossRefGoogle Scholar
  138. 138.
    Koga N (2005) A comparative study of the effects of decomposition rate control and mechanical grinding on the thermal decomposition of aluminum hydroxide. J Therm Anal Calorim 81(3):595–601CrossRefGoogle Scholar
  139. 139.
    Kimura T, Koga N (2011) Thermal dehydration of monohydrocalcite: overall kinetics and physico-geometrical mechanisms. J Phys Chem A 115(38):10491–10501CrossRefGoogle Scholar
  140. 140.
    Koga N, Suzuki Y, Tatsuoka T (2012) Thermal dehydration of magnesium acetate tetrahydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B 116(49):14477–14486CrossRefGoogle Scholar
  141. 141.
    Koga N, Yamada S, Kimura T (2013) Thermal decomposition of silver carbonate: phenomenology and physicogeometrical kinetics. J Phys Chem C 117(1):326–336CrossRefGoogle Scholar
  142. 142.
    Kitabayashi S, Koga N (2014) Physico-geometrical mechanism and overall kinetics of thermally induced oxidative decomposition of Tin(II) oxalate in air: formation process of microstructural Tin(IV) Oxide. J Phys Chem C 118(31):17847–17861CrossRefGoogle Scholar
  143. 143.
    Wada T, Nakano M, Koga N (2015) Multistep kinetic behavior of the thermal decomposition of granular sodium percarbonate: hindrance effect of the outer surface layer. J Phys Chem A 119(38):9749–9760CrossRefGoogle Scholar
  144. 144.
    Stacey MH, Shanon MD (1985) The decomposition of Cu-Zn hydroxi-carbonate solid solutions. Mater Sci Monogr 28:713–718Google Scholar
  145. 145.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascual-Cosp J, Benítez-Guerrero M, Criado JM (2011) An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose 18(6):1487–1498CrossRefGoogle Scholar
  146. 146.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2009) Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stab 94(11):2079–2085CrossRefGoogle Scholar
  147. 147.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2011) Constant rate thermal analysis for thermal stability studies of polymers. Polym Degrad Stab 96(5):974–981CrossRefGoogle Scholar
  148. 148.
    Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA (2010) Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer 51(17):3998–4007CrossRefGoogle Scholar
  149. 149.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114(30):7868–7876CrossRefGoogle Scholar
  150. 150.
    Arii T, Ichihara S, Nakagawa H, Fujii N (1998) A kinetic study of the thermal decomposition of polyesters by controlled-rate thermogravimetry. Thermochim Acta 319(1–2):139–149CrossRefGoogle Scholar
  151. 151.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta 552:54–59CrossRefGoogle Scholar
  152. 152.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C 116(21):11797–11807CrossRefGoogle Scholar
  153. 153.
    Perejón A, Sánchez-Jiménez PE, Gil-González E, Pérez-Maqueda LA, Criado JM (2013) Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polym Degrad Stab 98(9):1571–1577CrossRefGoogle Scholar
  154. 154.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Limitations of model-fitting methods for kinetic analysis: Polystyrene thermal degradation. Resour Conserv Recycl 74:75–81CrossRefGoogle Scholar
  155. 155.
    Miranda R, Yang J, Roy C, Vasile C (1999) Vacuum pyrolysis of PVC I. Kinetic study. Polym Degrad Stab 64(1):127–144CrossRefGoogle Scholar
  156. 156.
    Miranda R, Yang J, Roy C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polym Degrad Stab 72(3):469–491CrossRefGoogle Scholar
  157. 157.
    Kim S (2001) Pyrolysis kinetics of waste PVC pipe. Waste Manag 21(7):609–616CrossRefGoogle Scholar
  158. 158.
    Jiménez A, Berenguer V, López J, Sánchez A (1993) Thermal degradation study of poly(vinyl chloride): kinetic analysis of thermogravimetric data. J Appl Polym Sci 50(9):1565–1573CrossRefGoogle Scholar
  159. 159.
    Wu C-H, Chang C-Y, Hor J-L, Shih S-M, Chen L-W, Chang F-W (1994) Two-stage pyrolysis model of PVC. Can J Chem Eng 72(4):644–650CrossRefGoogle Scholar
  160. 160.
    Slapak MJP, van Kasteren JMN, Drinkenburg AAH (2000) Determination of the pyrolytic degradation kinetics of virgin-PVC and PVC-waste by analytical and computational methods. Comput Theor Polym Sci 10(6):481–489CrossRefGoogle Scholar
  161. 161.
    Rouquerol J (1973) Critical examination of several problems typically found in the kinetic study of thermal decomposition under vacuum. J Therm Anal 5(2–3):203–216CrossRefGoogle Scholar
  162. 162.
    Rouquerol J, Ganteaume M (1977) Thermolysis under vacuum: essential influence of the residual pressure on thermoanalytical curves and the reaction products. J Therm Anal 11(2):201–210CrossRefGoogle Scholar
  163. 163.
    Rouquerol J, Rouquerol F, Ganteaume M (1975) Thermal decomposition of gibbsite under low pressures I. Formation of the boehmitic phase. J Catal 36(1):99–110CrossRefGoogle Scholar
  164. 164.
    Stacey MH (1985) Applications of thermal methods in catalysis. Anal Proc 22(8):242–243Google Scholar
  165. 165.
    Stacey MH (1987) Kinetics of decomposition of gibbsite and boehmite and the characterization of the porous products. Langmuir 3(5):681–686Google Scholar
  166. 166.
    Barnes PA, Parkes GMB (1995) A new approach to catalyst preparation using rate controlled temperature programme techniques. Stud Surf Sci Catal 91:859–868CrossRefGoogle Scholar
  167. 167.
    Koga N, Yamada S (2004) Controlled rate thermal decomposition of synthetic bayerite under vacuum. Solid State Ionics 172(1–4):253–256CrossRefGoogle Scholar
  168. 168.
    Pérez-Maqueda LA, Criado JM, Real C, Subrt J, Bohacek J (1999) The use of constant rate thermal analysis (CRTA) for controlling the texture of hematite obtained from the thermal decomposition of goethite. J Mater Chem 9(8):1839–1845CrossRefGoogle Scholar
  169. 169.
    Pérez-Maqueda LA, Criado JM, Subrt J, Real C (1999) Synthesis of acicular hematite catalysts with tailored porosity. Catal Lett 60(3):151–156CrossRefGoogle Scholar
  170. 170.
    Chopra GS, Real C, Alcalá MD, Pérez-Maqueda LA, Subrt J, Criado JM (1999) Factors influencing the texture and stability of maghemite obtained from the thermal decomposition of lepidocrocite. Chem Mater 11(4):1128–1137CrossRefGoogle Scholar
  171. 171.
    Salles F, Douillard JM, Denoyel R, Bildstein O, Jullien M, Beurroies I, Van Damme H (2009) Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. J Colloid Interface Sci 333(2):510–522CrossRefGoogle Scholar
  172. 172.
    Belgacem K, Llewellyn P, Nahdi K, Trabelsi-Ayadi M (2008) Thermal behaviour study of the talc. Optoelectron Adv Mat 2(6):332–336Google Scholar
  173. 173.
    Rockmann R, Kalies G (2007) Characterization and adsorptive application of ordered mesoporous silicas. Appl Surf Sci 253(13):5666–5670CrossRefGoogle Scholar
  174. 174.
    Llewellyn P, Rouquerol J (2003) SCTA and adsorbents. J Therm Anal Calorim 72(3):1099–1101CrossRefGoogle Scholar
  175. 175.
    Sicard L, Llewellyn PL, Patarin J, Kolenda F (2001) Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Microporous Mesoporous Mater 44–45:195–201CrossRefGoogle Scholar
  176. 176.
    Dufau N, Luciani L, Rouquerol F, Llewellyn P (2001) Use of sample controlled thermal analysis to liberate the micropores of aluminophosphate AlPO4 II: evidence of template evaporation. J Mater Chem 11(4):1300–1304CrossRefGoogle Scholar
  177. 177.
    Chevrot V, Llewellyn PL, Rouquerol F, Godlewski J, Rouquerol J (2000) Low temperature constant rate thermodesorption as a tool to characterise porous solids. Thermochim Acta 360(1):77–83CrossRefGoogle Scholar
  178. 178.
    Llewellyn P, Rouquerol F, Rouquerol J (2003) SCTA and Adsorbents. In: Sørensen OT, Rouquerol J (eds) Sample controlled thermal analysis: origin, goals, multiple forms, applications and future. Kluwer, Dordrecht, pp 135–173CrossRefGoogle Scholar
  179. 179.
    Pérez-Maqueda LA, Sánchez-Jiménez PE, Criado JM (2007) Sample controlled temperature (SCT): a new method for the synthesis and characterization of catalysts. Curr Top Catal 6:1–17Google Scholar
  180. 180.
    Criado JM, Gotor FJ, Real C, Jimenez F, Ramos S, Delcerro J (1991) Application of the constant rate thermal-analysis technique to the microstructure control of BaTiO3 yielded from coprecipitated oxalate. Ferroelectrics 115(1–3):43–48CrossRefGoogle Scholar
  181. 181.
    Criado JM, Dianez MJ, Gotor F, Real C, Mundi M, Ramos S, Delcerro J (1992) Correlation between synthesis conditions, coherently diffracting domain size and cubic phase stabilization in barium-titanate. Ferroelectrics Lett 14(3–4):79–84CrossRefGoogle Scholar
  182. 182.
    Gotor FJ, Real C, Dianez MJ, Criado JM (1996) Relationships between the texture and structure of BaTiO3 and its tetragonal → cubic transition enthalpy. J Solid State Chem 123(2):301–305CrossRefGoogle Scholar
  183. 183.
    Gotor FJ, Pérez-Maqueda LA, Criado JM (2003) Synthesis of BaTiO3 by applying the sample controlled reaction temperature (SCRT) method to the thermal decomposition of barium titanyl oxalate. J Eur Ceram Soc 23(3):505–513CrossRefGoogle Scholar
  184. 184.
    Pérez-Maqueda LA, Diánez MJ, Gotor FJ, Sayagués MJ, Real C, Criado JM (2003) Synthesis of needle-like BaTiO3 particles from the thermal decomposition of a citrate precursor under sample controlled reaction temperature conditions. J Mater Chem 13(9):2234–2241CrossRefGoogle Scholar
  185. 185.
    Alcalá MD, Real C, Criado JM (1992) Application of constant rate thermal analysis (CRTA) to the synthesis of silicon nitride by carbothermal reduction of silica. J Therm Anal 38(3):313–319CrossRefGoogle Scholar
  186. 186.
    Alcalá MD, Criado JM, Real C (2002) Preparation of Si3N4 from carbothermal reduction of SiO employing the CRTA method. Mater Sci Forum 383:25–30CrossRefGoogle Scholar
  187. 187.
    Alcalá MD, Criado JM, Real C (2002) Sample controlled reaction temperature (SCRT): controlling the phase composition of silicon nitride obtained by carbothermal reduction. Adv Eng Mater 4(7):478–482CrossRefGoogle Scholar
  188. 188.
    Real C, Alcalá MD, Criado JM (1997) Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method. Solid State Ionics 95(1–2):29–32CrossRefGoogle Scholar
  189. 189.
    Ortega A, Roldan MA, Real C (2006) Carbothermal synthesis of vanadium nitride: kinetics and mechanism. Int J Chem Kinet 38(6):369–375CrossRefGoogle Scholar
  190. 190.
    Ortega A, Roldan MA, Real C (2005) Carbothermal synthesis of titanium nitride (TiN): kinetics and mechanism. Int J Chem Kinet 37(9):566–571CrossRefGoogle Scholar
  191. 191.
    Real C, Alcalá MD, Criado JM (2004) Synthesis of silicon nitride from carbothermal reduction of rice husks by the constant rate thermal analysis (CRTA) method. J Am Ceram Soc 87(1):75–78CrossRefGoogle Scholar
  192. 192.
    Alcalá MD, Criado JM, Real C (2001) Influence of the experimental conditions and the grinding of the starting materials on the structure of silicon nitride synthesised by carbothermal reduction. Solid State Ionics 141–142:657–661CrossRefGoogle Scholar
  193. 193.
    Schaf O, Weibel A, Llewellyn PL, Knauth P, Kaabbuathong N, Vona MLD, Licoccia S, Traversa E (2004) Preparation and electrical properties of dense ceramics with NASICON composition sintered at reduced temperatures. J Electroceram 13(1–3):817–823CrossRefGoogle Scholar
  194. 194.
    Dwivedi A, Speyer RF (1994) Rate-controlled organic burnout of multilayer green ceramics. Thermochim Acta 247(2):431–438CrossRefGoogle Scholar
  195. 195.
    Nishimoto MY, Speyer RF, Hackenberger WS (2001) Thermal processing of multilayer PLZT actuators. J Mater Sci 36(9):2271–2276CrossRefGoogle Scholar
  196. 196.
    Feylessoufi A, Crespin M, Dion P, Bergaya F, Van Damme H, Richard P (1997) Controlled rate thermal treatment of reactive powder concretes. Adv Cem Based Mater 6(1):21–27CrossRefGoogle Scholar
  197. 197.
    Grillet Y, Cases JM, Francois M, Rouquerol J, Poirier JE (1988) Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment. Clays Clay Miner 36(3):233–242CrossRefGoogle Scholar
  198. 198.
    Bordère S, Floreancing A, Rouquerol F, Rouquerol J (1993) Obtaining a divided uranium oxide from the thermolysis of UO2(NO3)2·6H2O: outstanding role of the residual pressure. Solid State Ionics 63–65:229–235CrossRefGoogle Scholar
  199. 199.
    Llewellyn PL, Chevrot V, Ragai J, Cerclier O, Estienne J, Rouquerol F (1997) Preparation of reactive nickel oxide by the controlled thermolysis of hexahydrated nickel nitrate. Solid State Ionics 101:1293–1298CrossRefGoogle Scholar
  200. 200.
    Arii T, Taguchi T, Kishi A, Ogawa M, Sawada Y (2002) Thermal decomposition of cerium(III) acetate studied with sample-controlled thermogravimetric–mass spectrometry (SCTG—MS). J Eur Ceram Soc 22(13):2283–2289CrossRefGoogle Scholar
  201. 201.
    Nahdi K, Férid M, Ayadi MT (2009) Thermal dehydration of CeP3O9·3H2O by controlled rate thermal analysis. J Therm Anal Calorim 96(2):455–461CrossRefGoogle Scholar
  202. 202.
    Chehimi-Moumen F, Llewellyn P, Rouquerol F, Vacquier G, Hassen-Chehimi DB, Ferid M, Trabelsi-Ayadi M (2005) Constant transformation rate thermal analysis of HGdP2O7·3H2O. J Therm Anal Calorim 82(3):783–789CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jose M. Criado
    • 1
    Email author
  • Luis A. Pérez-Maqueda
    • 1
  • Nobuyoshi Koga
    • 2
  1. 1.Instituto de Ciencias de Materiales de SevillaCentro Mixto Universidad de Sevilla—C.S.I.CSevilleSpain
  2. 2.Chemistry Laboratory, Department of Science EducationGraduate School of Education, Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations