Skip to main content

Physico-chemical Analysis of Ceramic Material Systems: From Macro- to Nanostate

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

  • 2068 Accesses

Abstract

The historical aspects of ceramic production, as well as the modern approaches to the technical side of ceramic production, especially solgel technology as the path to modern nanotechnologies, are discussed. It is pointed out that the most essential significance of the nanostate for the applied sciences lies in the possibility of merging the inorganic, organic, and biological worlds, thus creating a prodigious number of new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shevchenko VYa (1993) Introduction to technical ceramics. Nauka, Moscow

    Google Scholar 

  2. Vandiver P, Kingery W (1986) Egyptian faience: the first high-tech ceramic. In: High-technology ceramics: past, present, and future. American Ceramic Society, pp 19–34

    Google Scholar 

  3. Freestone IM (1986) Title refractories in the ancient and preindustrial world. In: High-technology ceramics: past, present, and future. American Ceramic Society, pp 35–65

    Google Scholar 

  4. Lechtman HN, Hobbs LW (1986) Roman concrete and the roman architectural revolution. In: High-technology ceramics: past, present, and future. American Ceramic Society, pp 81–128

    Google Scholar 

  5. Gao-Zhen L, Ling-Xiang G (1986) Development of Chinese celadon and its influences. In: High-technology ceramics: past, present, and future. American Ceramic Society, pp 129–152

    Google Scholar 

  6. Kingery W (1986) The Development of the European Porcelain. In: High-technology ceramics: past, present, and future. American Ceramic Society, pp 153–180

    Google Scholar 

  7. Lomonosov M (1951) Working log 1751. In: Research in physics and chemistry. USSR Academy of Sciences, p 372

    Google Scholar 

  8. Ebelmen JJ (1846) Annals 57:331

    Google Scholar 

  9. Graham T (1864) J Chem Soc 17:318

    Article  Google Scholar 

  10. Mendeleev DI (1860) Khim Zh 4:65

    Google Scholar 

  11. Brinker CJ, Sherer GW (1990) The physics and chemistry of sol-gel processing. Academic Press, Inc., Am Imprint of Elsevier, 908 p

    Google Scholar 

  12. Mackenzie JD (2003) Sol-gel research achievements since 1981 and prospects for future. J Sol-Gel Sci Technol 26:23–27

    Article  CAS  Google Scholar 

  13. Marchi M, Megri RM, Bilmes SA (2003) Photophysical methods for the study of sol-gel transition and structure of titania gels. J Sol-Gel Sci Technol 26:131–135

    Article  CAS  Google Scholar 

  14. Shevchenko VY, Madison AE, Shudegov VE (2003) Fragmentariness and metamorphoses of nanostructures. Fiz Khim Stekla 29(6): 809–816 (Glass Phys Chem (Engl transl), (2003) 29(6):583–588]

    Google Scholar 

  15. Shevchenko VY, Madison AE, Shudegov VE (2003) The structural diversity of the nanoworld. Fiz Khim Stekla 29(6):801–808 (Glass Phys Chem (Engl transl), 2003 29(6):577–582)

    Google Scholar 

  16. Bernal JD, Carlisle CH (1968) Range of generalized crystallography. Kristallografiya 13(5):927–951

    CAS  Google Scholar 

  17. Ishimasa T, Kaneko Y, Kaneko H (2004) New group of stable icosahedral quasicrystals: structural properties and formation conditions. J Non-Cryst Solids 1–7:334–335

    Google Scholar 

  18. Bragg W, Claringbull GF (1965) Crystal structures of minerals. Bell, London

    Google Scholar 

  19. Colomer J-F, Henrard L, van Tendeloo G, Lucas A, Lambin P (2004) Study of the packing of double-walled carbon nanotubes onto bundles by transmission electron microscopy and electron diffraction. J Mater Sci 14(4):603–606

    CAS  Google Scholar 

  20. Sadoc JF, Rivier N (1999) Boerdijk-Coxeter Helix and biological helices. Eur Phys J 12:309–318

    Article  CAS  Google Scholar 

  21. Socolar JES, Steinhardt PJ (1986) Quasicrystals: II. Unit-cell configurations. Phys Rev B: Condens Matter 34(2):617–647

    Article  CAS  Google Scholar 

  22. Locher JL (ed) (2000) Escher: the complete graphic work. Thames and Hudson Ltd., London, 349 p

    Google Scholar 

  23. Anderson S, Wadsley AD (1966) Nature (London) 211:581–583

    Article  Google Scholar 

  24. Fére YG, Mellot-Draznieks C, Loiseau T (2003) Real, virtual, and not yet discovered porous structures using scale chemistry and/or simulation: a tribute to Sten Anderson. Solid State Sci 5(1):79–94

    Google Scholar 

  25. Bendersky LA, Gayle FW (2001) Electron diffraction using transmission electron microscopy. J Res Natl Inst Stand Technol 106(6):997–1012

    Article  CAS  Google Scholar 

  26. Withers RL (2003) An analytical solution for the zero frequency hyperbolic RUM modes of distortion of SiO2—Tridymite. Solid State Sci 5(1):115–123

    Article  CAS  Google Scholar 

  27. Shevchenko VY, Khasanov OL, Madison AE, Lee JY (2002) Investigation of the structure of zirconia nanoparticles by high-resolution transmission electron microscopy. Fiz Khim Stekla 28(5):459–464 (Glass Phys Chem (Engl transl), 2002 28(5):322–325)

    Google Scholar 

  28. Alok Singh, Tsai AP (2003) On the cubic W phase and its relationship to the Icosahedral Phase in Mg–Zn–Y Alloys. Scr Mater 49(2):143–148

    Article  Google Scholar 

  29. Samoylovich MI, Shevchenko VY, Talis AL (2004) Structural diversity of the nanoworld and the algebraic geometry constructions. In: Nanotechnologies and photonic crystals. Tekhnomash, Kaluga, pp 174–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ya. Shevchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shevchenko, V.Y. (2017). Physico-chemical Analysis of Ceramic Material Systems: From Macro- to Nanostate. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_19

Download citation

Publish with us

Policies and ethics