Thermal Gradients in Thermal Analysis Experiments

  • Jordi FarjasEmail author
  • Daniel Sánchez-Rodriguez
  • Hichem Eloussifi
  • Pere Roura
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)


The concept of “sample temperature” in non-isothermal thermal analysis experiments is analyzed. From the analysis of the heat balance inside the sample, it is shown that the existence of such sample temperature is restricted to experimental conditions, where the thermal gradients are negligible. Two different sources of thermal gradients are studied: the sample thermal inertia and the heat of reaction that is not quickly removed. The conditions to prevent the formation of thermal gradients as well as the condition for a thermal runaway to occur are deduced. Finally, it is shown that the aspect ratio is a crucial parameter for the formation of thermal gradients within the sample.


Thermal Gradient Sample Mass Combustion Front Ignition Time Crucible Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded by the Spanish Programa Nacional de Materiales through project MAT2014-51778-C2-2-R and by the Generalitat de Catalunya contract No. 2014SGR-00948.


  1. 1.
    Málek J, Sesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A (1992) Possibilities of two non-isothermal procedures (temperature- or rate-controlled) for kinetical studies. J Therm Anal Calorim 38:71–87CrossRefGoogle Scholar
  2. 2.
    Criado JM, Gotor FJ, Ortega A, Real C (1992) The new method of constant rate thermal analysis (CRTA): application to discrimination of the kinetic model of solid state reactions and the synthesis of materials. Thermochim Acta 199:235–238CrossRefGoogle Scholar
  3. 3.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  4. 4.
    Farjas J, Butchosa N, Roura P (2010) A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim 102:615–625CrossRefGoogle Scholar
  5. 5.
    Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60CrossRefGoogle Scholar
  6. 6.
    Patt ME, White BE, Stein B, Cotts EJ (1992) Thermal time constants in differential scanning calorimetry. Thermochim Acta 197:413–424CrossRefGoogle Scholar
  7. 7.
    Roura P, Farjas J (2005) Analysis of the sensitivity and sample–furnace thermal-lag of a differential thermal analyzer. Thermochim Acta 430:115–122CrossRefGoogle Scholar
  8. 8.
    Siniti M, Schiets F, Alouani K, Claudy P (2007) Heat transfer in a disc-type DSC apparatus. J Therm Anal Calorim 89:45–50CrossRefGoogle Scholar
  9. 9.
    Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks. J Therm Anal Calorim 113:1633–1643CrossRefGoogle Scholar
  10. 10.
    Holba P, Šesták J, Sedmidubský D (2013) Heat transfer and phase transition in DTA experiments. In: Šesták J, Šimon P (eds) Therm Anal Micro, Nano-Non-Crystalline Mater Springer, Netherlands, pp 99–133Google Scholar
  11. 11.
    Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6CrossRefGoogle Scholar
  12. 12.
    Melling R, Wilburn FW, McIntosh RM (1969) Study of thermal effects observed by differential thermal analysis. Theory and its application to influence of sample parameters on a typical DTA curve. Anal. Chem. Am Chemical Soc 41:1275–86Google Scholar
  13. 13.
    Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M (2014) Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta 589:37–46CrossRefGoogle Scholar
  14. 14.
    Coats AW, Redfern JP (1963) Thermogravimetric Analysis Analyst 88:906Google Scholar
  15. 15.
    Brown ME (2004) Introduction to thermal analysis. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  16. 16.
    American society for testing and materials (ASTM International), test method E698 (2005) Method for Arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method. Annu B ASTM Stand vol 14.02. ASTM International, West Conshohocken PAGoogle Scholar
  17. 17.
    Šesták J, Šatava V, Wendlandt WW (1973) The study of heterogeneous processes by thermal analysis. Thermochim Acta 7:333–334CrossRefGoogle Scholar
  18. 18.
    Crighton JS, Wilburn FW (1992) The role of heat transfer in the production of DSC curves. Thermochim Acta 203:1–5CrossRefGoogle Scholar
  19. 19.
    Mraw SC (1982) Mathematical treatment of heat flow in differential scanning calorimetry and differential thermal analysis instruments. Rev Sci Instrum 53:228–231CrossRefGoogle Scholar
  20. 20.
    Merzhanov AG, Barzykin VV, Shteinberg AS, Gontkovskaya VT (1977) Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim Acta 21:301–332CrossRefGoogle Scholar
  21. 21.
    Klemensiewicz Z (1949) Thermal conductivity of powders. Nature 164:589CrossRefGoogle Scholar
  22. 22.
    Mukasyan AS, Rogachev AS (2008) Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci 34:377–416CrossRefGoogle Scholar
  23. 23.
    Sánchez-Rodríguez D, López-Olmedo JP, Farjas J, Roura P (2015) Determination of thermal conductivity of powders in different atmospheres by differential scanning calorimetry. J Therm Anal Calorim 121:469–473CrossRefGoogle Scholar
  24. 24.
    Pujula M, Sánchez-Rodríguez D, Lopez-Olmedo JP, Farjas J, Roura P (2016) Measuring thermal conductivity of powders with differential scanning calorimetry. J Therm Anal Calorim 125:571–577Google Scholar
  25. 25.
    Goel NS, Gerboc JS, Lehmann G (1992) A simple model for heat conduction in heterogeneous materials and irregular boundaries. Int Commun Heat Mass Transf 19:519–530CrossRefGoogle Scholar
  26. 26.
    Wendlandt WW (1986) Thermal analysis. Wiley, New YorkGoogle Scholar
  27. 27.
    Eloussifi H, Farjas J, Roura P, Camps J, Dammak M, Ricart S, Puig T, Obradors X (2012) Evolution of yttrium trifluoroacetate during thermal decomposition. J Therm Anal Calorim 108:589–596CrossRefGoogle Scholar
  28. 28.
    Eloussifi H, Farjas J, Roura P, Ricart S, Puig T, Obradors X, Dammak M (2013) Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films. Thin Solid Films 545:200–204CrossRefGoogle Scholar
  29. 29.
    Farjas J, Roura P (2011) Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim 105:757–766CrossRefGoogle Scholar
  30. 30.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci Part C Polym 6:183–95Google Scholar
  31. 31.
    Farjas J, Roura P (2014) Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformations. Thermochim Acta 598:51–58CrossRefGoogle Scholar
  32. 32.
    Farjas J, Roura P (2008) Simple approximate analytical solution for nonisothermal single-step transformations: Kinetic analysis. AIChE J 54:2145–2154CrossRefGoogle Scholar
  33. 33.
    Neeft JPA, Hoornaert F, Makkee M, Moulijn JA (1996) The effects of heat and mass transfer in thermogravimetrical analysis. A case study towards the catalytic oxidation of soot. Thermochim Acta 287:261–278CrossRefGoogle Scholar
  34. 34.
    Sánchez-Rodríguez D, Wada H, Yamaguchi S, Farjas J, Yahiro H (2015) Self-propagating high-temperature synthesis of LaMO3 perovskite-type oxide using heteronuclearcyano metal complex precursors. J Alloys Compd 649:1291–1299CrossRefGoogle Scholar
  35. 35.
    Farjas J, Camps J, Roura P, Ricart S, Puig T, Obradors X (2012) The thermal decomposition of barium trifluoroacetate. Thermochim Acta 544:77–83CrossRefGoogle Scholar
  36. 36.
    Eloussifi H, Farjas J, Roura P, Ricart S, Puig T, Obradors X, Dammak M (2013) Thermal decomposition of barium trifluoroacetate thin films. Thermochim Acta 556:58–62CrossRefGoogle Scholar
  37. 37.
    Varma A, Rogachev AS, Mukasyan AS, Hwang S (1998) Combustion synthesis of advanced materials: principles and applications. Adv Chem Eng 24:79–226CrossRefGoogle Scholar
  38. 38.
    Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid State Mater Sci 6:507–512CrossRefGoogle Scholar
  39. 39.
    Rabinovich OS, Grinchuk PS, Andreev MA, Khina BB (2007) Conditions for combustion synthesis in nanosized Ni/Al films on a substrate. Phys B Condens Matter 392:272–280CrossRefGoogle Scholar
  40. 40.
    Thiers L, Mukasyan AS, Varma A (2002) Thermal explosion in Ni-Al system: influence of reaction medium microstructure. Combust Flame 131:198–209CrossRefGoogle Scholar
  41. 41.
    Semenov N (1940) Thermal theory of combustion and explosion. Prog Phys Sci USSR 23:251–292Google Scholar
  42. 42.
    Semenov N (1928) Theories of combustion processes. Zeitschrift für Phys 48:571–582CrossRefGoogle Scholar
  43. 43.
    Merzhanov AG, Khaikin BI (1988) Theory of combustion waves in homogeneous media. Prog Energy Combust Sci 14:1–98CrossRefGoogle Scholar
  44. 44.
    Morsi K (2011) The diversity of combustion synthesis processing: a review. J Mater Sci 47:68–92CrossRefGoogle Scholar
  45. 45.
    Sanchez-Rodriguez D, Farjas J, Roura P, Ricart S, Mestres N, Obradors X, Puig T (2013) Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions. J Phys Chem C 117:20133–20138CrossRefGoogle Scholar
  46. 46.
    Roura P, Farjas J, Eloussifi H, Carreras L, Ricart S, Puig T, Obradors X (2015) Thermal analysis of metal organic precursors for functional oxide preparation: thin films versus powders. Thermochim Acta 601:1–8CrossRefGoogle Scholar
  47. 47.
    Boddington T, Hongtu F, Laye PG, Nawaz M, Nelson DC (1990) Thermal runaway by thermal analysis. Thermochim Acta 170:81–87CrossRefGoogle Scholar
  48. 48.
    Merzhanov AG, Averson AEE (1971) The present state of the thermal ignition theory: an invited review. Combust Flame 16:89–124CrossRefGoogle Scholar
  49. 49.
    Frank-Kamenetskii DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, New JerseyGoogle Scholar
  50. 50.
    Chambré PL (1952) On the solution of the poisson-boltzmann equation with application to the theory of thermal explosions. J Chem Phys 20:1795CrossRefGoogle Scholar
  51. 51.
    Gill W, Donaldson AB, Shouman AR (1979) The Frank-Kamenetskii problem revisited. Part I. boundary conditions of first kind. Combust Flame 36:217–232CrossRefGoogle Scholar
  52. 52.
    Harley C, Momoniat E (2008) Alternate derivation of the critical value of the frank-kamenetskii parameter in cylindrical geometry. J Nonlinear Math Phys 15:69–76CrossRefGoogle Scholar
  53. 53.
    Farjas J, Camps J, Roura P, Ricart S, Puig T, Obradors X (2011) Thermoanalytical study of the formation mechanism of yttria from yttrium acetate. Thermochim Acta 521:84–89CrossRefGoogle Scholar
  54. 54.
    Kim M-G, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10:382–388CrossRefGoogle Scholar
  55. 55.
    Marchal W, De Dobbelaere C, Kesters J, Bonneux G, Vandenbergh J, Damm H et al (2015) Combustion deposition of MoO3 films: from fundamentals to OPV applications. RSC Adv. 5:91349–91362CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jordi Farjas
    • 1
    Email author
  • Daniel Sánchez-Rodriguez
    • 1
  • Hichem Eloussifi
    • 1
  • Pere Roura
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations