Skip to main content

Thermal Gradients in Thermal Analysis Experiments

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

The concept of “sample temperature” in non-isothermal thermal analysis experiments is analyzed. From the analysis of the heat balance inside the sample, it is shown that the existence of such sample temperature is restricted to experimental conditions, where the thermal gradients are negligible. Two different sources of thermal gradients are studied: the sample thermal inertia and the heat of reaction that is not quickly removed. The conditions to prevent the formation of thermal gradients as well as the condition for a thermal runaway to occur are deduced. Finally, it is shown that the aspect ratio is a crucial parameter for the formation of thermal gradients within the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Málek J, Sesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A (1992) Possibilities of two non-isothermal procedures (temperature- or rate-controlled) for kinetical studies. J Therm Anal Calorim 38:71–87

    Article  Google Scholar 

  2. Criado JM, Gotor FJ, Ortega A, Real C (1992) The new method of constant rate thermal analysis (CRTA): application to discrimination of the kinetic model of solid state reactions and the synthesis of materials. Thermochim Acta 199:235–238

    Article  CAS  Google Scholar 

  3. Vyazovkin S, Burnham AK, Criado JM, Pérez-maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  CAS  Google Scholar 

  4. Farjas J, Butchosa N, Roura P (2010) A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Therm Anal Calorim 102:615–625

    Article  CAS  Google Scholar 

  5. Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60

    Article  CAS  Google Scholar 

  6. Patt ME, White BE, Stein B, Cotts EJ (1992) Thermal time constants in differential scanning calorimetry. Thermochim Acta 197:413–424

    Article  CAS  Google Scholar 

  7. Roura P, Farjas J (2005) Analysis of the sensitivity and sample–furnace thermal-lag of a differential thermal analyzer. Thermochim Acta 430:115–122

    Article  CAS  Google Scholar 

  8. Siniti M, Schiets F, Alouani K, Claudy P (2007) Heat transfer in a disc-type DSC apparatus. J Therm Anal Calorim 89:45–50

    Article  CAS  Google Scholar 

  9. Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks. J Therm Anal Calorim 113:1633–1643

    Article  Google Scholar 

  10. Holba P, Šesták J, Sedmidubský D (2013) Heat transfer and phase transition in DTA experiments. In: Šesták J, Šimon P (eds) Therm Anal Micro, Nano-Non-Crystalline Mater Springer, Netherlands, pp 99–133

    Google Scholar 

  11. Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6

    Article  CAS  Google Scholar 

  12. Melling R, Wilburn FW, McIntosh RM (1969) Study of thermal effects observed by differential thermal analysis. Theory and its application to influence of sample parameters on a typical DTA curve. Anal. Chem. Am Chemical Soc 41:1275–86

    Google Scholar 

  13. Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M (2014) Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta 589:37–46

    Article  Google Scholar 

  14. Coats AW, Redfern JP (1963) Thermogravimetric Analysis Analyst 88:906

    Google Scholar 

  15. Brown ME (2004) Introduction to thermal analysis. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  16. American society for testing and materials (ASTM International), test method E698 (2005) Method for Arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa method. Annu B ASTM Stand vol 14.02. ASTM International, West Conshohocken PA

    Google Scholar 

  17. Šesták J, Šatava V, Wendlandt WW (1973) The study of heterogeneous processes by thermal analysis. Thermochim Acta 7:333–334

    Article  Google Scholar 

  18. Crighton JS, Wilburn FW (1992) The role of heat transfer in the production of DSC curves. Thermochim Acta 203:1–5

    Article  CAS  Google Scholar 

  19. Mraw SC (1982) Mathematical treatment of heat flow in differential scanning calorimetry and differential thermal analysis instruments. Rev Sci Instrum 53:228–231

    Article  CAS  Google Scholar 

  20. Merzhanov AG, Barzykin VV, Shteinberg AS, Gontkovskaya VT (1977) Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim Acta 21:301–332

    Article  CAS  Google Scholar 

  21. Klemensiewicz Z (1949) Thermal conductivity of powders. Nature 164:589

    Article  CAS  Google Scholar 

  22. Mukasyan AS, Rogachev AS (2008) Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci 34:377–416

    Article  CAS  Google Scholar 

  23. Sánchez-Rodríguez D, López-Olmedo JP, Farjas J, Roura P (2015) Determination of thermal conductivity of powders in different atmospheres by differential scanning calorimetry. J Therm Anal Calorim 121:469–473

    Article  Google Scholar 

  24. Pujula M, Sánchez-Rodríguez D, Lopez-Olmedo JP, Farjas J, Roura P (2016) Measuring thermal conductivity of powders with differential scanning calorimetry. J Therm Anal Calorim 125:571–577

    Google Scholar 

  25. Goel NS, Gerboc JS, Lehmann G (1992) A simple model for heat conduction in heterogeneous materials and irregular boundaries. Int Commun Heat Mass Transf 19:519–530

    Article  CAS  Google Scholar 

  26. Wendlandt WW (1986) Thermal analysis. Wiley, New York

    Google Scholar 

  27. Eloussifi H, Farjas J, Roura P, Camps J, Dammak M, Ricart S, Puig T, Obradors X (2012) Evolution of yttrium trifluoroacetate during thermal decomposition. J Therm Anal Calorim 108:589–596

    Article  CAS  Google Scholar 

  28. Eloussifi H, Farjas J, Roura P, Ricart S, Puig T, Obradors X, Dammak M (2013) Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films. Thin Solid Films 545:200–204

    Article  CAS  Google Scholar 

  29. Farjas J, Roura P (2011) Isoconversional analysis of solid state transformations. A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim 105:757–766

    Article  CAS  Google Scholar 

  30. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci Part C Polym 6:183–95

    Google Scholar 

  31. Farjas J, Roura P (2014) Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformations. Thermochim Acta 598:51–58

    Article  CAS  Google Scholar 

  32. Farjas J, Roura P (2008) Simple approximate analytical solution for nonisothermal single-step transformations: Kinetic analysis. AIChE J 54:2145–2154

    Article  CAS  Google Scholar 

  33. Neeft JPA, Hoornaert F, Makkee M, Moulijn JA (1996) The effects of heat and mass transfer in thermogravimetrical analysis. A case study towards the catalytic oxidation of soot. Thermochim Acta 287:261–278

    Article  CAS  Google Scholar 

  34. Sánchez-Rodríguez D, Wada H, Yamaguchi S, Farjas J, Yahiro H (2015) Self-propagating high-temperature synthesis of LaMO3 perovskite-type oxide using heteronuclearcyano metal complex precursors. J Alloys Compd 649:1291–1299

    Article  Google Scholar 

  35. Farjas J, Camps J, Roura P, Ricart S, Puig T, Obradors X (2012) The thermal decomposition of barium trifluoroacetate. Thermochim Acta 544:77–83

    Article  CAS  Google Scholar 

  36. Eloussifi H, Farjas J, Roura P, Ricart S, Puig T, Obradors X, Dammak M (2013) Thermal decomposition of barium trifluoroacetate thin films. Thermochim Acta 556:58–62

    Article  CAS  Google Scholar 

  37. Varma A, Rogachev AS, Mukasyan AS, Hwang S (1998) Combustion synthesis of advanced materials: principles and applications. Adv Chem Eng 24:79–226

    Article  CAS  Google Scholar 

  38. Patil KC, Aruna ST, Mimani T (2002) Combustion synthesis: an update. Curr Opin Solid State Mater Sci 6:507–512

    Article  CAS  Google Scholar 

  39. Rabinovich OS, Grinchuk PS, Andreev MA, Khina BB (2007) Conditions for combustion synthesis in nanosized Ni/Al films on a substrate. Phys B Condens Matter 392:272–280

    Article  CAS  Google Scholar 

  40. Thiers L, Mukasyan AS, Varma A (2002) Thermal explosion in Ni-Al system: influence of reaction medium microstructure. Combust Flame 131:198–209

    Article  CAS  Google Scholar 

  41. Semenov N (1940) Thermal theory of combustion and explosion. Prog Phys Sci USSR 23:251–292

    CAS  Google Scholar 

  42. Semenov N (1928) Theories of combustion processes. Zeitschrift für Phys 48:571–582

    Article  CAS  Google Scholar 

  43. Merzhanov AG, Khaikin BI (1988) Theory of combustion waves in homogeneous media. Prog Energy Combust Sci 14:1–98

    Article  CAS  Google Scholar 

  44. Morsi K (2011) The diversity of combustion synthesis processing: a review. J Mater Sci 47:68–92

    Article  Google Scholar 

  45. Sanchez-Rodriguez D, Farjas J, Roura P, Ricart S, Mestres N, Obradors X, Puig T (2013) Thermal analysis for low temperature synthesis of oxide thin films from chemical solutions. J Phys Chem C 117:20133–20138

    Article  CAS  Google Scholar 

  46. Roura P, Farjas J, Eloussifi H, Carreras L, Ricart S, Puig T, Obradors X (2015) Thermal analysis of metal organic precursors for functional oxide preparation: thin films versus powders. Thermochim Acta 601:1–8

    Article  CAS  Google Scholar 

  47. Boddington T, Hongtu F, Laye PG, Nawaz M, Nelson DC (1990) Thermal runaway by thermal analysis. Thermochim Acta 170:81–87

    Article  CAS  Google Scholar 

  48. Merzhanov AG, Averson AEE (1971) The present state of the thermal ignition theory: an invited review. Combust Flame 16:89–124

    Article  CAS  Google Scholar 

  49. Frank-Kamenetskii DA (1955) Diffusion and heat exchange in chemical kinetics. Princeton University Press, New Jersey

    Google Scholar 

  50. Chambré PL (1952) On the solution of the poisson-boltzmann equation with application to the theory of thermal explosions. J Chem Phys 20:1795

    Article  Google Scholar 

  51. Gill W, Donaldson AB, Shouman AR (1979) The Frank-Kamenetskii problem revisited. Part I. boundary conditions of first kind. Combust Flame 36:217–232

    Article  Google Scholar 

  52. Harley C, Momoniat E (2008) Alternate derivation of the critical value of the frank-kamenetskii parameter in cylindrical geometry. J Nonlinear Math Phys 15:69–76

    Article  Google Scholar 

  53. Farjas J, Camps J, Roura P, Ricart S, Puig T, Obradors X (2011) Thermoanalytical study of the formation mechanism of yttria from yttrium acetate. Thermochim Acta 521:84–89

    Article  CAS  Google Scholar 

  54. Kim M-G, Kanatzidis MG, Facchetti A, Marks TJ (2011) Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat Mater 10:382–388

    Article  CAS  Google Scholar 

  55. Marchal W, De Dobbelaere C, Kesters J, Bonneux G, Vandenbergh J, Damm H et al (2015) Combustion deposition of MoO3 films: from fundamentals to OPV applications. RSC Adv. 5:91349–91362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Programa Nacional de Materiales through project MAT2014-51778-C2-2-R and by the Generalitat de Catalunya contract No. 2014SGR-00948.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Farjas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farjas, J., Sánchez-Rodriguez, D., Eloussifi, H., Roura, P. (2017). Thermal Gradients in Thermal Analysis Experiments. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_16

Download citation

Publish with us

Policies and ethics