Advertisement

Thermo-kinetic Phenomena Occurring in Glasses: Their Formalism and Mutual Relationships

  • Roman SvobodaEmail author
  • Jiří Málek
  • Jaroslav Šesták
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)

Abstract

In the present chapter, the macroscopic (recorded by methods of thermal analysis) manifestation of the structural relaxation and cold crystallization phenomena occurring in the glassy matrices will be discussed. Present formalism and methodological background are reviewed. Equilibrium viscous flow is introduced as an interconnecting element between the two phenomena. The consequent part then deals with the rheological and viscosity-related aspects of the glassy state itself. Viscosity behavior in view of so-called fragility is renovated in terms of thermal sensitivity. The chapter contains 98 references.

Keywords

Apparent Activation Energy Structural Relaxation Isoconversional Method Master Plot Measured Heat Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Czech Science Foundation under project No. 16-10562S (Svoboda, Málek) as well as by the Ministry of Education of the Czech Republic in the framework of CENTEM PLUS project (LO1402) operated under the “National Sustainability Program I” (Šesták).

References

  1. 1.
    Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29:240–253CrossRefGoogle Scholar
  2. 2.
    Narayanaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–497CrossRefGoogle Scholar
  3. 3.
    Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on cooling rate. J Am Ceram Soc 59:12–16CrossRefGoogle Scholar
  4. 4.
    Scherer GW (1986) Relaxation in glass and composites. WileyGoogle Scholar
  5. 5.
    McKenna GB (1989) Glass formation and glassy behavior. In: Comprehensive polymer science 2, pergamonGoogle Scholar
  6. 6.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Sol 169:211–266CrossRefGoogle Scholar
  7. 7.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glass forming liquids and amorphous solids. J Appl Phys 88:3113–3157CrossRefGoogle Scholar
  8. 8.
    Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20:703–760CrossRefGoogle Scholar
  9. 9.
    Liška M, Chromčíková M (2005) Simultaneous volume and enthalpy relaxation. J Therm Anal Calorim 81:125–129CrossRefGoogle Scholar
  10. 10.
    Svoboda R (2013) Relaxation processes in Se-rich chalcogenide glasses: Effect of characteristic structural entities. Acta Mater 61:4534–4541CrossRefGoogle Scholar
  11. 11.
    Hodge IM, Berens AR (1982) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 15:762–770CrossRefGoogle Scholar
  12. 12.
    Hodge IM, Berens AR (1985) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 5. Mathematical modeling of nonthermal presaging perturbations. Macromolecules 18:1980–1984CrossRefGoogle Scholar
  13. 13.
    Kohlrausch F (1866) Beitrage zur Kenntniss der elastichen Nachwirkung. Ann Phys Chem 128:1–20CrossRefGoogle Scholar
  14. 14.
    Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRefGoogle Scholar
  15. 15.
    Rekhson SM, Bulaeva AV, Mazurin OV (1971) Change in linear dimensions and viscosity of window glass during stabilization. Izv Akad Nauk SSSR Neorg Mater 7:714–715Google Scholar
  16. 16.
    DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:16–21CrossRefGoogle Scholar
  17. 17.
    Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908CrossRefGoogle Scholar
  18. 18.
    Kovacs AJ (1963) Transition vitreuse dans les polymers amorphes – Etude phenomenologique. Fortschr Hochpolym Forsch 3:394–507CrossRefGoogle Scholar
  19. 19.
    Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRefGoogle Scholar
  20. 20.
    Hodge IM (1997) Adam-Gibbs formulation of enthalpy relaxation near the glass transition. J Res Natl Inst Stand Technol 102:195–205CrossRefGoogle Scholar
  21. 21.
    Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRefGoogle Scholar
  22. 22.
    Ngai KL (1994) Disordered effects in relaxation processes. SpringerGoogle Scholar
  23. 23.
    Rendell RW, Ngai KL, Fong GR, Aklonis JJ (1987) Volume recovery near the glass-transition temperature in polyvinylacetate—predictions of a coupling model. Macromolecules 20:1070–1083CrossRefGoogle Scholar
  24. 24.
    Svoboda R, Málek J (2013) Description of macroscopic relaxation dynamics in glasses. J Non-Cryst Solids 378:186–195CrossRefGoogle Scholar
  25. 25.
    Svoboda R (2014) How to determine activation energy of glass transition. J Therm Anal Calorim 118:1721–1732CrossRefGoogle Scholar
  26. 26.
    Svoboda R (2014) Utilization of “q +/q = const.” DSC cycles for enthalpy relaxation studies. Eur Polym J 59:180–188CrossRefGoogle Scholar
  27. 27.
    Svoboda R (2015) Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by error data-distortive operations. J Non-Cryst Sol 408:115–122CrossRefGoogle Scholar
  28. 28.
    Svoboda R (2015) Novel equation to determine activation energy of enthalpy relaxation. J Therm Anal Calorim 121:895–899CrossRefGoogle Scholar
  29. 29.
    Svoboda R, Čičmanec P, Málek J (2013) Kissinger equation versus glass transition phenomenology. J Therm Anal. Cal 114:285–293CrossRefGoogle Scholar
  30. 30.
    Svoboda R, Málek J (2013) Glass transition in polymers: (in)correct determination of activation energy. Polymer 54:1504–1511CrossRefGoogle Scholar
  31. 31.
    Málek J, Svoboda R, Pustková P, Čičmanec P (2009) Volume and enthalpy relaxation of a-Se in the glass transition region. J Non-Cryst Solids 355:264–272CrossRefGoogle Scholar
  32. 32.
    Hodge IM (1991) Adam-Gibbs formulation of non-linear enthalpy relaxation. J Non-Cryst Sol 131–133:435–441CrossRefGoogle Scholar
  33. 33.
    Chromčiková M, Liška M (2006) Simple relaxation model of the reversible part of the StepScan DSC record of glass transition. J Therm Anal Calorim 84:703–708CrossRefGoogle Scholar
  34. 34.
    Dyre JC, Christensen T, Olsen NB (2006) Elastic models for the non-Arhenius viscosity of glass-forming liquids. J Non-Cryst Sol 352:4635–4642CrossRefGoogle Scholar
  35. 35.
    Martinez LM, Angell CA (2001) A thermodynamic connection to the fragility of glass-forming liquids. Nature 410:663–667CrossRefGoogle Scholar
  36. 36.
    Yang G, Gulbiten O, Gueguen Y, Bureau B, Sangleboeuf JC, Roiland C, King EA, Lucas P (2012) Fragile-strong behavior in the AsxSe1−x glass forming system in relation to structural dimensionality. Phys Rev B 85:144107CrossRefGoogle Scholar
  37. 37.
    Svoboda R, Málek J (2015) Kinetic fragility of Se-rich chalcogenide glasses. J Non-Cryst Sol 419:39–44CrossRefGoogle Scholar
  38. 38.
    Svoboda R, Honcová P, Málek J (2010) Apparent activation energy of structural relaxation for Se70Te30 glass. J Non-Cryst Solids 356:165–168CrossRefGoogle Scholar
  39. 39.
    Svoboda R, Málek J (2014) Nucleation in As2Se3 glass studied by DSC. Thermochim Acta 593:16–21CrossRefGoogle Scholar
  40. 40.
    Avrami M (1939) Kinetics of phase change I—general theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  41. 41.
    Avrami M (1940) Kinetics of phase change. II—transformation-time relations for random distribution of nuclei. J Chem Phys 7:212–224CrossRefGoogle Scholar
  42. 42.
    Avrami M (1941) Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys 7:177–184CrossRefGoogle Scholar
  43. 43.
    Johnson WA, Mehl KF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng 135:416–442Google Scholar
  44. 44.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICATC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  45. 45.
    Henderson DW (1979) Experimental analysis of non-isothermal transformations involving nucleation and growth. J Therm Anal 15:325–331; and (1979) Thermal analysis of non-isothermal crystallization kinetics in glass-forming liquids. J Non-Cryst Sol 30:301–315Google Scholar
  46. 46.
    Kemeny T, Šesták J (1987) Comparison of crystallization kinetics determined by isothermal and nonisothermal methods. Thermochim Acta 110:113–121Google Scholar
  47. 47.
    Šesták J (1984) Modeling reaction mechanism by use of Euclidean and fractal geometry, Chapter 10 in his book: thermophysical properties of solids, their measurements and theoretical analysis. Elsevier, pp 276–314 (ISBN 13978-0-444-51954-2); and (2015) The Šesták-Berggren equation: now questioned but formerly celebrated—what is right? J Therm Anal Calorim. doi: 10.1007/s10973-015-4998-x
  48. 48.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, WileyGoogle Scholar
  49. 49.
    Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176CrossRefGoogle Scholar
  50. 50.
    Svoboda R, Málek J (2014) Is the original Kissinger equation obsolete today? J Therm Anal Calorim 115:1961–1967CrossRefGoogle Scholar
  51. 51.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  52. 52.
    Perez-Maqueda LA, Criado JM, Malek J (2003) Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Sol 320:84–91CrossRefGoogle Scholar
  53. 53.
    Málek J (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta 355:239–253CrossRefGoogle Scholar
  54. 54.
    Svoboda R, Málek J (2011) Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta 526:237–251CrossRefGoogle Scholar
  55. 55.
    Svoboda R, Málek J (2014) Crystallization kinetics of a-Se, part 2: deconvolution of a complex process—the final answer. J Therm Anal Cal 115:81–91CrossRefGoogle Scholar
  56. 56.
    Perejón A, Sánchéz-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115:1780–1791CrossRefGoogle Scholar
  57. 57.
    Svoboda R, Málek J (2013) Applicability of Fraser-Suzuki function in kinetic analysis of complex processes. J Therm Anal Cal 111:1045–1056CrossRefGoogle Scholar
  58. 58.
    Opferman J (2000) Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim 60:641–658CrossRefGoogle Scholar
  59. 59.
    Nakano M, Wada T, Koga N (2015) Exothermic behavior of thermal decomposition of sodium percarbonate: kinetic deconvolution of successive endotermic and exothermic processes. J Phys Chem A 119:9761–9769CrossRefGoogle Scholar
  60. 60.
    Honcová P, Svoboda R, Pilný P, Sádovská G, Barták J, Beneš L, Honc D (2016) Kinetic study of dehydration of calcium oxalate trihydrate. J Therm Anal Calorim 124:151–158CrossRefGoogle Scholar
  61. 61.
    Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028CrossRefGoogle Scholar
  62. 62.
    Ediger MD, Harrowell P, Yu L (2008) Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J Chem Phys 128:034709CrossRefGoogle Scholar
  63. 63.
    Hlaváček B, Carreau PJ (1975) Correlation between linear and non-linear viscoelatic data for polymer solutions. In: Walters K, Hutton JF, Pearson JRA (eds) Theoretical rheology. Applied Science Publishers, London (ISBN 9780853346388)Google Scholar
  64. 64.
    Hlaváček B, Šesták J (2009) Structural changes in liquids, creation of voids, micromovemets of vibrational centers and built-in blocks toward the glass transition temperature. Chapter 18. In: Šesták J, Holeček M, Málek J (eds) Thermodynamic, structural and behavior aspects of materials accentuating non-crystalline states. OPS-ZČU Plzeň, pp 388–411 (ISBN 978-80-87269-06-00, second edition 2011 (ISBN 978-80-87269-20-6)Google Scholar
  65. 65.
    Šesták J, Hlaváček B, Hubík P, Mareš JJ (2013) Vibrational forms in the vicinity of glass transition, structural changes and the creation of voids when assuming polarizibility. Chapter 3. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. pp 41–58. Springer, Berlin (ISBN 978-90-481-2881-5)Google Scholar
  66. 66.
    Šesták J (2004) Oscillation modes and modern theories of glassy state. Chapter 14. In: Heat, thermal analysis and society. Nucleus, Hradec Kralove, pp 242–247 (ISBN 8086225-54-2)Google Scholar
  67. 67.
    Šesták J (2015) Dynamic cooperative behavior of constituting species at the glass transition vicinity: inspirational links to B. Hlaváček (1941-2014) legacy. J Therm Anal Calor. 120:167–173CrossRefGoogle Scholar
  68. 68.
    Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) Transition points in liquid state and their molecular modeling. Thermochim Acta 280(281):417CrossRefGoogle Scholar
  69. 69.
    Hlaváček B, Křesálek V, Souček J (1997) Anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRefGoogle Scholar
  70. 70.
    Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and T g transition. J Polym Eng 17:111–137Google Scholar
  71. 71.
    Hlaváček B, Shánělova J, Málek J (1999) The discontinuities in amplitudes of particles micromotions in liquid state. Mech Time-Depend Mater 3:351–370CrossRefGoogle Scholar
  72. 72.
    Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity T g of transition. J Therm Anal Cal 67:239CrossRefGoogle Scholar
  73. 73.
    Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Cal 80:271–283CrossRefGoogle Scholar
  74. 74.
    Hlaváček B, Drašar Č, Kalendová A, Mencl P, Šesták J, Veselý D (2013) Glassy state, as the lawfully disarranged state: vibration uncertainty and chaos like movements. Phys Procedia 44:52–59 (ISSN: 1875-3892)Google Scholar
  75. 75.
    Málek J, Svoboda R (2013) Structural relaxation and viscosity behavior in supercooled liquids at the glass transition, Chapter 7. In: Šesták J, Šimon P (eds) Thermal analysis of micro, nano- and non-crystalline materials. Springer, Berlin, pp 147–174 (ISBN 978-90-481-3149-5)Google Scholar
  76. 76.
    Hlaváček B, Mareš JJ (2008) Fyzika struktur amorfních a krystalických materiálů. In: Šesták J (ed) Physics of structures of amorphous and crystalline materials. Public House of the Pardubice, Pardubice (in Czech - ISBN 978-80-7395-023-1)Google Scholar
  77. 77.
    Bradley P (2010) Great mysteries. New Holland, New YorkGoogle Scholar
  78. 78.
    Schultz JM (1974) Polymer material science. Prentice Hall, Englewood, New Jersey (ISBN 013-6870-38-4)Google Scholar
  79. 79.
    Tobolsky AV (1960) The properties and structure of polymers. John Wiley, New York (ISBN 047-1875-81-3)Google Scholar
  80. 80.
    Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294–299CrossRefGoogle Scholar
  81. 81.
    Ferry JD (1961) Viscoelastic properties of polymers, 3rd edn. Wiley, New York (1980—ISBN: 978-0-471-04894-7)Google Scholar
  82. 82.
    Williams M, Landel R, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Amer Chem Soc 77:3701–3707CrossRefGoogle Scholar
  83. 83.
    Liu CY, He JS, Keunings R, Bailly R (2006) New linearized relation for the universal viscosity-temperature behavior of polymer melts. Macromolecules 39:8867–8869CrossRefGoogle Scholar
  84. 84.
    Šesták J (1985) Some thermodynamic aspects of the glassy state. Thermochim Acta 95:13–459Google Scholar
  85. 85.
    Queiroz C, Šesták J (2010) Aspects of the non-crystalline state. Phys Chem Glass Eur J Glass Sci Technol B 51:165–168Google Scholar
  86. 86.
    Angell CA (1988) Perspective on the glass transition. J Phys Chem Sol 49:863–871CrossRefGoogle Scholar
  87. 87.
    Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids 131(133):13–31CrossRefGoogle Scholar
  88. 88.
    Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-Cryst Solids 279:126–135CrossRefGoogle Scholar
  89. 89.
    Angell CA, Sichina W (1976) Thermodynamics of the glass transition: empirical aspects. Ann New York Acad Sci 279:53–67CrossRefGoogle Scholar
  90. 90.
    Angell CA (1991) Thermodynamic aspects of the glass transition in liquids and plastic crystals. Pure Appl Chem 63:1387CrossRefGoogle Scholar
  91. 91.
    Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1615CrossRefGoogle Scholar
  92. 92.
    Angell CA (2013) Heat capacity and entropy functions in strong and fragile glass-formers relative to those of disordering crystalline materials. Chapter 2. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials. Springer, Berlin, pp 21–40 (ISBN 978-90-481-2881-5)Google Scholar
  93. 93.
    Hlaváček B, Šesták J (2014) Redefinition of the dependence of dynamical viscosity on temperature as the thermal sensitivity as an alternative of the familiar term known as Angell´s fragility. Uncompleted and unpublishedGoogle Scholar
  94. 94.
    Kozmidis-Petrovič AF (2016) Impact of the stretching exponent on fragility of glass-forming liquids. J Thermal Anal Calorim, doi:  10.1007/s10973-016-5828-5
  95. 95.
    Kozmidis-Petrovič AF, Šesták J (2017) Glass transition temperature its exploitation and insight to fragility. J Min Metall B, submittedGoogle Scholar
  96. 96.
    Mareš JJ, Šesták J (2005) An attempt at quantum thermal physics. J Thermal Anal Calor 82:681–686CrossRefGoogle Scholar
  97. 97.
    Mareš JJ, Stávek J, Šesták J (2004) Quantum aspects of self-organized periodical chemical reactions. J Chem Phys 121:1499CrossRefGoogle Scholar
  98. 98.
    Mareš JJ, Šesták J, Hubík P (2013) Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14. In: Šesták J, Mareš J, Hubík P (eds) Glassy, amorphous and nano-crystalline materials: thermal physics, analysis, structure and properties. Springer, Berlin, pp 227–245 (ISBN 978-90-481-2881-5)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Roman Svoboda
    • 1
    Email author
  • Jiří Málek
    • 1
  • Jaroslav Šesták
    • 2
  1. 1.Department of Physical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  2. 2.New Technologies Research Centre (NTC-ZČU)University of West BohemiaPilsenCzech Republic

Personalised recommendations