Imperfections of Kissinger Evaluation Method and the Explanation of Crystallization Kinetics of Glasses and Melts

  • Jaroslav ŠestákEmail author
  • Pavel Holba
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 11)


The famous Kissinger’s kinetic evaluation method (see Anal. Chem. 1957) is examined with respect to both the relation between the DTA signal θ(t) and the reaction rate r(t) ≡ dα/dt, the requirements on reaction mechanism model f(α), and the relation of starting kinetic equation to the equilibrium behavior of sample under study. Distorting effect of heat inertia and difference between the temperature T p of extreme DTA deviation and the temperature T m at which the reaction rate is maximal are revealed. DTA equation of Borchard and Daniels is criticized regarding the neglection of heat inertia correction. The kinetic equations respecting the influence of equilibrium temperature T eq , especially fusion/melting temperature T f , are tested as bases for a modified Kissinger-like evaluation of kinetics. Crystallization kinetics on melt solidification is examined under integration of undercooling and needed Gibbs approximations are explored. This chapter provides a new insight into the routine practice of nonisothermal kinetics showing forward-looking outlook and encompasses hundreds of references.


Kissinger Method Maximum Reaction Rate Kissinger Equation Kissinger Plot Heat Inertia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was developed at the Join Research Laboratory of the Institute of Physics CAS and the New Technologies Centre of the University of West Bohemia in Pilsen (the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088 that is co-funded from the ERDF as a part of the MEYS—Ministry of Education, Youth and Sports OP RDI Program and, in the follow-up sustainability stage supported through the CENTEM PLUS LO 1402). The abandoned support by the Grant Agency of ČR for the projected grant ‘Thermal inertia and its significance for the analysis of DTA measurements’ (No 17-21840S-2016) is worth mentioning as an example of fatal misunderstanding of current needs of thermal science. Deep thanks are due to long-lasting collaboration activity by J.J. Mareš, P. Hubík (Institute of Physics), J. Málek (University of Pardubice), N. Koga (Hiroshima University in Japan) and P. Šimon (The President of the Slovak Chemical Society, with Technical University in Bratislava).


  1. 1.
    Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials by DSC using Kissinger method (2001) ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United StatesGoogle Scholar
  2. 2.
    Svoboda R, Málek J (2014) Is the original Kissinger equation obsolete today? J Therm Anal Calorim 115:1961–1967; and Šesták J (2014) Is the original Kissinger equation obsolete today—not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim 117:1173–1177Google Scholar
  3. 3.
    Blaine RL, Kissinger HE (2012) Homer Kissinger and the Kissinger equation. Thermochim Acta 540:1–6; and Kissinger HE (1956) Variation of peak temperature with heating rate in DTA. J Res Natl Bur Stand 57(4):217–221Google Scholar
  4. 4.
    Šesták J (1984) Thermophysical properties of solids: theoretical thermal analysis. Amsterdam: Elsevier and Russian translation: ‘Těoretičeskij těrmičeskij analyz’ Moscow: Mir 1988Google Scholar
  5. 5.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  6. 6.
    Murray P, White J (1955) Kinetics of the thermal decomposition of clay; Part 4: Interpretation of DTA to thermal analysis of clays. Trans Brit Ceram Soc 54:204–237Google Scholar
  7. 7.
    Matusita K, Sakka S (1978) Kinetic study of crystallization by DTA: criterion and application of Kissinger plot. J Non-Cryst Sol 39:741–746; and (1979) Kinetic study of crystallization of glass by differential thermal analysis: criterion on application of Kissinger plot. Phys Chem Glasses 20:81–84Google Scholar
  8. 8.
    Augis JA, Bennet JE (1978) Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method. J Thermal Anal 13:283–292CrossRefGoogle Scholar
  9. 9.
    Balarin M (1979) Is Kissinger’s rule true? Thermochim Acta 33:341–343CrossRefGoogle Scholar
  10. 10.
    Boswell PG (1980) On the calculation of activation energies using a modified Kissinger method. J Thermal Anal 18:353–358; and Elder JP (1985) The general applicability of the Kissinger equation in thermal analysis J Thermal Anal 30:657–669Google Scholar
  11. 11.
    Chen X, Gao D, Dollimore D (1993) A generalized form of the Kissinger equation. Thermochim Acta 215:109–117CrossRefGoogle Scholar
  12. 12.
    Taylor SM, Fryer PJ (1992) Numerical study of the use of the Kissinger analysis of DSC thermograms to obtain reaction kinetic parameters. Thermochim Acta 209:111–125CrossRefGoogle Scholar
  13. 13.
    Shishkin YuL (1985) Reaction kinetics calculated by the single-point method: a synthesis of DTA theory by Kissinger. J Thermal Anal 30:557–577CrossRefGoogle Scholar
  14. 14.
    Llópiz J, Romero MM, Jerez A, Laureiro Y (1995) Generalization of the Kissinger equation for several kinetic models. Thermochim Acta 256:205–211CrossRefGoogle Scholar
  15. 15.
    Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2008) Kissinger kinetic analysis of data obtained under different heating schedule. J Thermal Anal Calor 94:427–432CrossRefGoogle Scholar
  16. 16.
    Budrugeac P, Segal E (2007) Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calor 88:703–707CrossRefGoogle Scholar
  17. 17.
    Starink MJ (2007) Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci 42:483; and Starink MJ (2004) Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics: a review. Int Mater Rev 49:191Google Scholar
  18. 18.
    Criado JM, Ortega A (1988) Nonisothermal transformation kinetics in relation to Kissinger method. J Non-Cryst Sol 87:302–311; and Koga N, Criado JM (1999) Application of the Kissinger method to solid-state reactions with a particle size distribution. J Min Metal 35:171–185Google Scholar
  19. 19.
    Budrugeac P (2007) The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters. J Therm Anal Calor 89:111CrossRefGoogle Scholar
  20. 20.
    Liu F, Liu XN, Wang Q (2009) Examination of Kissinger’s equation for solid-state transformation. J Alloys Com 473:152–156; and Yi C, Yanchun L, Yunlong H (2010) Supplement on applicability of the Kissinger equation in thermal Analysis. J Therm Anal Calorim 102:605–608Google Scholar
  21. 21.
    Roura P, Farjas J (2009) Analytical solution for the Kissinger equation. J Mater Res 24:3095; and Farjas J, Butchosa N, Roura P (2010) A simple kinetic method for the determination of the reaction model from non-isothermal experiments. J Thermal Anal Calorim 102:615–625Google Scholar
  22. 22.
    Farjas J, Roura P (2014) Exact analytical solution for the Kissinger equation: determination of the peak temperature and general properties of thermally activated transformations. Thermochim Acta 508:51–58CrossRefGoogle Scholar
  23. 23.
    Peng C, Chen ZH, Zhao XY, Zhang AL, Zhang KL, Chen D (2014) Crystallization kinetics of Zr60Cu25Fe5Al10 bulk metallic glass. J Non-Cryst Sol 405:7–11CrossRefGoogle Scholar
  24. 24.
    Huang C, Mei X, Cheng Y, Li Y, Zhu X (2014) A model-free method for evaluating theoretical error of Kissinger equation. J Therm Anal Calorim 116:1153–1157; and (2010) Supplement on applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim 102: 605–608Google Scholar
  25. 25.
    Holba P, Šesták J (2014) Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem 40:486–549CrossRefGoogle Scholar
  26. 26.
    Šesták J (2012) Citation records and some forgotten anniversaries in thermal analysis. J Thermal Anal Calor 109:1–5CrossRefGoogle Scholar
  27. 27.
    Holba P., Šesták J, Sedmidubský D (2013) Heat transfer and phase transition at DTA experiments. In: Šesták J, Šimon P (eds) Thermal analysis of Micro-, nano- and non-crystalline materials. Springer, Berlin, pp 99–134 (Chapter 5) (ISBN 978-90-481-3149-5)Google Scholar
  28. 28.
    Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks existing on every occasion of real measurements but until now omitted. J Therm. Anal Calorim 113:1633–1643Google Scholar
  29. 29.
    Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Thermal Anal Calor 121:303–307CrossRefGoogle Scholar
  30. 30.
    Vold MJ (1949) Differential thermal analysis. Anal Chem 21:683–688CrossRefGoogle Scholar
  31. 31.
    Šesták J (2012) Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Thermal Anal Calor 110:5–16CrossRefGoogle Scholar
  32. 32.
    Zsako J (1996) Compensation effect in heterogeneous non-isothermal kinetics. J Therm Anal 47:1679–1690CrossRefGoogle Scholar
  33. 33.
    Koga N, Šesták J (1991) Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim Acta 182:201–208CrossRefGoogle Scholar
  34. 34.
    Galwey AK, Mortimer M (2006) Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet 38:464–473CrossRefGoogle Scholar
  35. 35.
    Holba P, Šesták J (1972) Kinetics with regard to the equilibrium of processes studied by non-isothermal techniques. Zeit physik Chem NF 80:1–20Google Scholar
  36. 36.
    Holba P (2013) Equilibrium background of processes initiated by heating and the Ehrenfest classification of phase transitions. In: Šesták J, Šimon P (eds) Thermal analysis of micro-, nano- and non-crystalline materials. Springer, Berlin, pp 29–52 (Chapter 2) (ISBN 978-90-481-3149-5)Google Scholar
  37. 37.
    Mianowski A (2009) Consequences of Holba-Šesták equation reflecting processes equilibria. J Thermal Anal Calorim 96:507–513CrossRefGoogle Scholar
  38. 38.
    Mianowski A (2003) The Kissinger law and isokinetic effect: most common solution and thermokinetic equation. J Thermal Anal Calorim 74:953–973; and (2004) The Kissinger law and isokinetic effect: experimental analysis. J Thermal Anal Calor 75:355–373Google Scholar
  39. 39.
    Agresti F (2013) Extended Kissinger equation for near-equilibrium solid-gas heterogeneous transformations. Thermochim Acta 566:214–217CrossRefGoogle Scholar
  40. 40.
    Baumann W, Leineweber A, Mittermeijer EJ (2010) Failure of Kissinger (-like) method for the determinative of activation energies of phase transitions. J Mater Sci 45:6075–6082Google Scholar
  41. 41.
    Yao Z, Qiao JC, Zhang C, Yao Y (2015) Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region of bulk metallic glasses. J Non-Cryst Sol 415. Doi: 10.1016/j.jnoncrysol.2015.02.017; and Gong P, Zhao S, Wang X, Yao K (2015) Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Appl Phys A 120. Doi: 10.1007/s00339-015-9182-4
  42. 42.
    Šesták J (2005) Nonisothermal kinetics by thermal analysis. Chapter 11 in his book: science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam, pp 318–343 (ISBN 0-444-51954-8)Google Scholar
  43. 43.
    Šesták J, Kozmidis-Petrović A, Živković Ž (2011) Crystallization kinetics accountability and the correspondingly developed glass-forming criteria. J Min Metall Sect B-Metall 47:229–239CrossRefGoogle Scholar
  44. 44.
    Koga N, Šesták J, Šimon P (2013) Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis. In: Šesták J, Šimon P (eds) Thermal analysis of micro-, nano- and non-crystalline materials. Springer, Berlin, pp. 1–45 (Chapter 1) (ISBN 978-90-481-3149-5)Google Scholar
  45. 45.
    Illeková E, Šesták J (2013) Crystallization of metallic micro-, nano- and non-crystalline glasses. In: Šesták J, Šimon P (eds) Thermal analysis of Micro-, nano- and non-crystalline materials. Springer, Berlin, pp 257–290 (Chapter 13) (ISBN 978-90-481-3149-5)Google Scholar
  46. 46.
    Šesták J (2015) The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta 611:26–35CrossRefGoogle Scholar
  47. 47.
    Illeková E (1984) On the various activation energies at crystallization of amorphous metallic materials. J Non-Cryst Sol 68:153–216CrossRefGoogle Scholar
  48. 48.
    Galwey AK (2003) What it meant by the term ‘variable activation energy’ when applied in the kinetic analysis of solid state decompositions? Thermochim Acta 397:49–268CrossRefGoogle Scholar
  49. 49.
    Galwey AK (2006) What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition? J Therm Anal Calor 86:267–286CrossRefGoogle Scholar
  50. 50.
    Vyazovkin S, Burnham AK, Criado JN, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  51. 51.
    Málek J, Criado JM (1992) Empirical kinetic models in thermal analysis. Thermochim Acta 203:25–30CrossRefGoogle Scholar
  52. 52.
    Málek J (1995) The applicability of Johnson-Mehl-Avrami (JMAYK) model in the thermal analysis of crystallization kinetics of glasses. Thermochim Acta 267:61–73CrossRefGoogle Scholar
  53. 53.
    Mamleev V, Bourbigot S, LeBras M, Duquesne S, Šesták J (2000) Modeling of nonisothermal kinetic mechanism in thermogravimetry. Phys Chem Chem Phys 2:4708–4716CrossRefGoogle Scholar
  54. 54.
    Avramov I, Šesták J (2014) Generalized kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim 118:1715–1720CrossRefGoogle Scholar
  55. 55.
    Šimon P (2011) Forty years of Šesták-Berggren equation. Thermochim Acta 520:156–157CrossRefGoogle Scholar
  56. 56.
    Šesták J (2015) The Šesták-Berggren equation: now questioned by formerly celebrated—what is right? J Therm Anal Calorim. Doi: 10.1007/s10973-015-4998-x; and Militký J, Šesták J (2016) On the eliminating attempts toward Sestak-Berggren equation. J Therm Anal Calorim. Doi: 10.1007/s10973-016-5848-1
  57. 57.
    Atkinson HV (1988) Theories of normal grain growth in pure single phase systems. Acta Metall 36:469–491CrossRefGoogle Scholar
  58. 58.
    Illeková E (2001) Finemet-type nano-crystallization kinetics. Thermochim Acta 387:47–56CrossRefGoogle Scholar
  59. 59.
    Kozmidis-Petrovic AF, Šesták J (2013) Forty years of Turnbul reduced glass transition temperature and Hrubý glass-forming coefficient and their current perception ib glass characterization. In: Šesták J, Šimon P (eds) Thermal analysis of micro-, nano- and non-crystalline materials. Springer, Berlin, pp 75–98 (Chapter 4) (ISBN 978-90-481-3149-5)Google Scholar
  60. 60.
    Šesták J (1991) Phenomenology of glass crystallization. In: Chvoj Z, Šesták J, Tříska A (eds) Kinetic phase diagrams: nonequilibrium phase transitions. Elsevier, Amsterdam, pp 169–176 (Chapter 6) (ISBN 0-444-88513-7)Google Scholar
  61. 61.
    Ruitenberg FG (2003) Applied Kissinger analysis to the glass transition peak in amorphous metals. Thermochim Acta 404:2007–2011CrossRefGoogle Scholar
  62. 62.
    Soliman AA (2007) Derivation of the Kissinger equation for nonisothermal glass transition peaks. J Thermal Anal Calorim 89:389–392CrossRefGoogle Scholar
  63. 63.
    Mehta M, Kumar A, Pratap A (2007) Applicability of Kissinger relation in the determination of activation energies of glass transition processes. J Optoelect Adv Mater 7:1473–1478; and (2012) Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calor 17:159–165; and (2012) Study of kinetics of glass transition of metallic glasses. J Therm Anal Calor 110:567–571Google Scholar
  64. 64.
    Svoboda R, Čičmanec P, Málek J (2013) Kissinger equation versus glass transition phenomenology. J Therm Anal Cal 114:285–293CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Chen J, Liu H (2014) Applicability of Kissinger model in nonisothermal glass crystallization using a computer simulation method. J Therm Anal Calorim 117:783–787; and Gong P, Zhao S, Ding H, Yao K, Wang X (2015) Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. J Mater Res 30:2772–2782; and Zhu M, Li J, Yao L (2013) Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry. Thermochim Acta 565:132–136Google Scholar
  66. 66.
    Holba P, Šesták J (2014) Imperfections of Kissinger evaluation method and its impact on crystallization kinetics. Russian Fizika i Khimiya Stekla 40:645–657Google Scholar
  67. 67.
    Orava J, Greer AL (2015) Kissinger method applied to the crystallization of glass-forming liquids: regimes revealed by ultra-fast-heating calorimetry. Thermochim Acta 603:63–68CrossRefGoogle Scholar
  68. 68.
    Zhao B, Li L, Lu F, Zhai Q, Yang B, Schick C, Gao Y (2015) Phase transitions and nucleation mechanisms in metals studied by nanocalorimetry: a review. Thermochim Acta 603:2–23CrossRefGoogle Scholar
  69. 69.
    Schultze D (1969) Differentialthermoanalyze. VEB, BerlinGoogle Scholar
  70. 70.
    Smykats-Kloss W (1974) Differential thermal analysis. Springer, BerlinCrossRefGoogle Scholar
  71. 71.
    Pope MI, Judd MD (1977) Differential thermal analysis. Heyden, LondonGoogle Scholar
  72. 72.
    Höhne GWH, Hemminger W, Flammersheim HJ (2010) Differential scanning calorimetry. Springer, DortrechtGoogle Scholar
  73. 73.
    Egunov VP (1996) Bвeдeниe в тepмичecкий aнaлиз (Introduction to thermal analysis) SamaraGoogle Scholar
  74. 74.
    Wendlandt WW (1964) Thermal methods of analysis. Wiley, New YorkGoogle Scholar
  75. 75.
    Šesták J, Šatava V, Wendlandt WW (1973) The study of heterogeneous processes by thermal analysis, monography as a special issue of Thermochimica Acta, vol 7. Elsevier, AmsterdamGoogle Scholar
  76. 76.
    Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes. Pergamon Press, Oxford, pp 109–110Google Scholar
  77. 77.
    Boerio-Goates J, Callen JE (1992) Differential thermal methods. In: Rossiter BW, Beatzold RC (eds) Determination of thermodynamic properties. Wiley, New York, pp 621–718 (Chapter 8)Google Scholar
  78. 78.
    Borchadt HJ. (1956) Differential thermal analysis. J Chem Educ 33:03–109; and Borchard HJ, Daniels F (1957) The application of DTA to the study of reaction kinetics. J Amer Chem Soc 79:41–46Google Scholar
  79. 79.
    Blumberg AA (1959) DTA and heterogeneous kinetics: the reactions of vitreous silica with HF. J Phys Chem 63:1129CrossRefGoogle Scholar
  80. 80.
    Piloyan GO (1964) Bвeдeниe в тeopию тepмичecкoгo aнaлизa (Introduction in theory of thermal analysis), Izd. Nauka, MoskvaGoogle Scholar
  81. 81.
    Piloyan GO, Ryabchikov IO, Novikova SO (1966) Determination of activation energies of chemical reactions by DTA. Nature 3067:1229CrossRefGoogle Scholar
  82. 82.
    Holba P, Nevřiva M, Šesták J (1974) Utilization of DTA for the determination of heats of the transformation of solid-solutions Mn3O4-Mn2CrO4. Izv. AN SSSR, Neorg. Materialy 10:2007–2008 (in Russian)Google Scholar
  83. 83.
    Šesták J, Holba P, Bárta R (1976) Teorie a praxe termoanalytických metod založených na indikaci změn tepelného obsahu (Theory a practice of thermoanalytical methods based on indication of heat content changes) Silikáty 20:83–95Google Scholar
  84. 84.
    Šesták J, Holba P, Lombardi G (1977) Quantitative evaluation of thermal effects: theory and practice. Anal Chim 67:73–87Google Scholar
  85. 85.
    Holba P, Nevřiva M, Šesták J (1978) Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223–231CrossRefGoogle Scholar
  86. 86.
    Holba P (1987) Processing of thermoanalytical curves and exact use of thermal analysis Thermochimica Acta 110:81–85; and Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227Google Scholar
  87. 87.
    Šesták J (2005) Thermometry and calorimetry. Chapter 12 in his book: science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam, pp 344–375 (ISBN 0-444-51954-8)Google Scholar
  88. 88.
    Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775CrossRefGoogle Scholar
  89. 89.
    Sunol JJ, Berlanga R, Clavaguera-Mora MT, Clavaguera N (2002) Modeling crystallization processes and transformation diagrams. Acta Mater 50:4783–4790ACrossRefGoogle Scholar
  90. 90.
    Turnbull D (1969) Under what conditions can a glass be formed? Contemp Phys 10:473–488; and (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198–203Google Scholar
  91. 91.
    Mouchina E, Kaisersberger E (2009) Temperature dependence of the time constants for deconvolution of DSC heat flow curves. Thermochim Acta 492:101–109CrossRefGoogle Scholar
  92. 92.
    Šesták J (2015) Kinetic phase diagrams as a consequence of radical changing temperature or particle size. J Thermal Anal Calor 120:129–137CrossRefGoogle Scholar
  93. 93.
    Šesták J (2016) Measuring “hotness”: should the sensor’s readings for rapid temperature changes be named “tempericity”? J Thermal Anal Calorim 125:991–999; and Holba P (2016) Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi’s thermal science classification with regards to methods of thermal analysis. J Thermal Anal Calor. Doi: 10.1007/s10973-016-5659-4
  94. 94.
    Vehkamäki H (2006) Classical nucleation theory in multicomponent systems. Springer, Berlin/HeidelbergGoogle Scholar
  95. 95.
    Glicksmann ME (2011) Principles of solidification. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  96. 96.
    Pillai SKS, Málek J (2014) On approximating of thermodynamic driving force in deeply undercooled melts. Sci Papers University Pardubice, Series A20:263–272Google Scholar
  97. 97.
    Thompson C, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 27:1855CrossRefGoogle Scholar
  98. 98.
    Lad K, Raval K, Pratap A (2004) Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J Non Cryst Solids 335:259CrossRefGoogle Scholar
  99. 99.
    Hoffman JD (1958) Thermodynamic driving force in nucleation and growth processes. J Chem Phys 29:1192CrossRefGoogle Scholar
  100. 100.
    Dubey SK, Ramachandrarao P (1984) On the free energy change accompanying crystallization of undercooled melts. Acta Metal 32:91CrossRefGoogle Scholar
  101. 101.
    Ji X, Pan Y (2007) Gibbs free energy difference in metallic glass forming liquids. J Non Cryst Solids 353:2443CrossRefGoogle Scholar
  102. 102.
    Mareš JJ, Šesták J (2005) An attempt at quantum thermal physics. J Therm Anal Calor 82:681–686                              Google Scholar
  103. 103.
    Gemmer J, Michel M, Mahler G (2009) Quantum thermodynamics: emergence of thermodynamic behavior within composite quantum systems. Springer, Heidelberg   Google Scholar
  104. 104.
    Volz S (2007) Microscale and nanoscale heat transfer. Springer, HeidelbergGoogle Scholar
  105. 105.
    Mareš JJ, Šesták J, Hubík P (2011) Transport constitutive relations, quantum diffusion and periodic reactions. In: Šesták J, Mareš JJ, Hubík P (eds) Glassy, amorphous and nano-crystalline materials (Chapter 14), Springer, Heidelberg, pp 227–244Google Scholar
  106. 106.
    Adamovsky AS, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta  403:55–63Google Scholar
  107. 107.
    Adamovsky AS, Schick C (2004) Ultra-fast calorimetry using thin film sensors. Thermochim Acta 415:1–7Google Scholar
  108. 108.
    Höhne GWH (2003) Calorimetry on small systems—a thermodynamic contribution. Thermochim Acta 403:25–36Google Scholar
  109. 109.
    Wunderlich B (2007) Calorimetry of nanophases of macromolecules. Inter J Thermophys 28:958–967Google Scholar
  110. 110.
    Garden JL, Guillou H, Lopeandia AF, Richard J, Heron JS (2009) Thermodynamics of small systems by nanocalorimetry: from physical to biological nano-objects. Thermochim Acta 492:16–28Google Scholar
  111. 111.
    Perepezko JH, Glendenning TW, Wang JQ (2015) Nanocalorimnetry measurements of metastable states. Thermochim Acta 603:24–28Google Scholar
  112. 112.
    Zhao B, Li L, Lu F, Zhai Q, Yang B, Schick C (2015) Phase transitions and nucleation mechanisms studied by nanocalorimetry: a review. Thermochim Acta 603:2–23Google Scholar
  113. 113.
    Wautelet M, Duvivier D (2007) The characteristic dimensions of the nanoworld. Europ J Phys 28:953–959Google Scholar
  114. 114.
    Wautelet M, Shyrinian AS (2009) Thermodynamics: nano vs. macro. Pure Appl Chem 81:1921–1930Google Scholar
  115. 115.
    Šesták J, Mareš JJ (2014) Invited plenary lecture: composite materials and thermodynamics of nano-structured systems. Inter. Conference on composite nano-engineering in Saint Julian, MaltaGoogle Scholar
  116. 116.
    Šesták J, Invited lectures (2015) Thermal physics of nanostructured materials: thermodynamic (top-down) and quantum (bottom-up) issues. Inter. Thermodynamic conference in Nizhny Novgorod (Russia) and European TA Conference in Ljubljana (Slovenia)Google Scholar
  117. 117.
    Kaptay G (2008) A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion of liquid metals and crystals. Mater Sci Eng A 495:19–26Google Scholar
  118. 118.
    Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions: overview. Acta Mater 62:1–48Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.New Technologies Research Centre (NTC-ZČU)University of West BohemiaPilsenCzech Republic
  2. 2.Division of Solid-State PhysicsInstitute of Physics, v.v.i. Czech Academy of SciencesPragueCzech Republic

Personalised recommendations