Skip to main content

Local Thermal Analysis by Structural Characterization (TASC)

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

Thermal analysis by structural characterization (TASC) is a new thermal technique that is based on image analysis combined with hot-stage microscopy (HSM, also called thermomicroscopy). The image analysis algorithm is sensitive to any change in structure as seen by digital optical microscopy. A key feature of the algorithm is that it accounts for any sample movement. Due to thermal expansion of the sample or the sample chamber, there is, at high magnification, usually some sample displacement and this needs to be removed, so the measurement is purely one of structural change. HSM has a variety of uses but struggles with opaque samples (such as filled samples) and cannot routinely detect glass transitions. TASC, when used with an imposed structure such as an indentation, can routinely measure glass transition temperatures because, when the sample softens, the indentation disappears. This is true even when analyzing opaque samples. TASC can also be used to measure melting temperatures, transitions in small (microgram) samples, dissolution behavior, and heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price D, Reading M, Hammiche A, Pollock HM (2000) Micro-thermal analysis: scanning probe microscopy and localized thermal analysis. Int J Pharm 192(1):85–95

    Article  Google Scholar 

  2. Harding L, King WP, Dai X, Reading M (2007) Nanoscale characterization and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. Pharm Res 24(11):2048–2054

    Article  CAS  Google Scholar 

  3. Xuan D, Moffat JG, Wood J, Reading M (2011) Thermal scanning probe microscopy in the development of pharmaceuticals. Adv Drug Deliv Rev 64(5):449–460

    Google Scholar 

  4. Gorbunov V, Grandy D, Reading M, Tsukruk V (2008) Micro and nanoscale local thermal analysis. In: Thermal analysis of polymers, fundamentals and applications, pp 615–649. doi:10.1002/780423837.ch7

  5. Reading M, Morton M, Antonijevic MD, Lacey AA (2014) New methods of thermal analysis and chemical mapping on a micro and nano scale by combining microscopy with image analysis. In: Mendez-Villas A (ed) Microscopy advances in scientific research and education, vol 2. Formatex Research Centre, pp 1083–1089

    Google Scholar 

  6. Alhijjaj M, Reading M, Belton P, Qi S (2015) Thermal analysis by structural characterization as a method for assessing heterogeneity in complex solid pharmaceutical dosage forms. Anal Chem 87:10848–10855

    Article  CAS  Google Scholar 

  7. Alhijjaj M, Yassin S, Reading M, Zeitler JA, Belton P, Qi S (2016) Characterization of heterogeneity and spatial distribution of phases in complex solid dispersions by thermal analysis by structural characterization and X-ray micro computed tomography. Pharm Res 2016:1–19

    Google Scholar 

  8. Buckley CP, Kovacs AJ (1976) Melting behaviour of low molecular weight poly (ethylene-oxide) fractions. Colloid Polym Sci 254:695–715

    Article  CAS  Google Scholar 

  9. Lloyd GR, Craig DQM, Smith A (1997) An investigation into the melting behavior of binary mixes and solid dispersions of paracetamol and PEG 4000. J Pharm Sci 86:991–996

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Reading .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reading, M., Qi, S., Alhijjaj, M. (2017). Local Thermal Analysis by Structural Characterization (TASC). In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_1

Download citation

Publish with us

Policies and ethics