Skip to main content

Configurable Fault Trees

  • Conference paper
  • First Online:
Software Engineering for Resilient Systems (SERENE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9823))

Included in the following conference series:

  • 559 Accesses

Abstract

Fault tree analysis, as many other dependability evaluation techniques, relies on given knowledge about the system architecture and its configuration. This works sufficiently for a fixed system setup, but becomes difficult with resilient hardware and software that is supposed to be flexible in its runtime configuration. The resulting uncertainty about the system structure is typically handled by creating multiple dependability models for each of the potential setups.

In this paper, we discuss a formal definition of the configurable fault tree concept. It allows to express configuration-dependent variation points, so that multiple classical fault trees are combined into one representation. Analysis tools and algorithms can include such configuration properties in their cost and probability evaluation. The applicability of the formalism is demonstrated with a complex real-world server system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.thomas-krenn.com/en/wiki/2U_Intel_Dual-CPU_RI2212+_Server.

  2. 2.

    https://www.fuzzed.org.

  3. 3.

    https://github.com/troeger/fuzzed.

References

  1. DIN EN 61025:2007 Fehlzustandsbaumanalyse (2007)

    Google Scholar 

  2. Band, R.A.L., Andrews, J.D.: Phased mission modelling using fault tree analysis. In: Proceedings of the Institution of Mechanical Engineers (2004)

    Google Scholar 

  3. Baraldi, P., Compare, M., Zio, E.: Component ranking by Birnbaum importance in presence of epistemic uncertainty in failure event probabilities. IEEE Trans. Reliab. 62, 37–48 (2013)

    Article  Google Scholar 

  4. Barlow, R.E., Heidtmann, K.D.: Computing \(k\)-out-of-\(n\) reliability. IEEE Trans. Reliab. R–33(4), 322 (1984)

    Article  MATH  Google Scholar 

  5. Birnbaum, Z.: On the importance of different components in a multicomponent system. Laboratory of Statistical Research, Department of Mathematics, University of Washington, Seattle, Washington (1968). No. 54

    Google Scholar 

  6. Bobbio, A., Codetta-Raiteri, D., Pierro, M.D., Franceschinis, G.: Efficient analysis algorithms for parametric fault trees. In: 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF 2005), pp. 91–105 (2005)

    Google Scholar 

  7. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison of alternative approaches. Risk Anal. 26(5), 1349–1361 (2006)

    Article  Google Scholar 

  8. van der Borst, M., Schoonakker, H.: An overview of PSA importance measures. Reliab. Eng. Syst. Safety 72(3), 241–245 (2001)

    Article  Google Scholar 

  9. Brissaud, F., Barros, A., Bérenguer, C.: Handling parameter and model uncertainties by continuous gates in fault tree analyses. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 224(4), 253–265 (2010)

    Article  Google Scholar 

  10. Buchacker, K.: Modeling with extended fault trees. In: Fifth IEEE International Symposium on High Assurance Systems Engineering (HASE 2000), pp. 238–246 (2000)

    Google Scholar 

  11. Flage, R., Terje, A., Baraldi, P., Zio, E.: On imprecision in relation to uncertainty importance measures. In: ESREL, pp. 2250–2255 (2011)

    Google Scholar 

  12. Heidtmann, K.D.: A class of noncoherent systems and their reliability analysis. In: 11th Annual Symposium on Fault Tolerant Computing, pp. 96–98 (1981)

    Google Scholar 

  13. Heidtmann, K.D.: Improved method of inclusion-exclusion applied to \(k\)-out-of-\(n\) systems. IEEE Trans. Reliab. R–31(1), 36–40 (1982)

    Article  MATH  Google Scholar 

  14. Hoang, P., Pham, M.: Optimal designs of \(\{k, n-k+ 1\}\)-out-of-n: F systems (subject to 2 failure modes). IEEE Trans. Reliab. 40(5), 559–562 (1991)

    Article  MATH  Google Scholar 

  15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS 2003), vol. 33, pp. 37–46 (2003)

    Google Scholar 

  16. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Statistical Methodology) 63(3), 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malinowski, J.: A recursive algorithm evaluating the exact reliability of a circular consecutive \(k\)-within-\(m\)-out-of-\(n\): F system. Microelectron. Reliab. 36(10), 1389–1394 (1996)

    Article  Google Scholar 

  18. Pedroni, N., Zio, E.: Uncertainty analysis in fault tree models with dependent basic events. Risk Anal. 33(6), 1146–1173 (2013)

    Article  Google Scholar 

  19. Pelletier, F.J., Hartline, A.: Ternary exclusive OR. Logic J. IGPL 16(1), 75–83 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rausand, M., Høyland, A.: System Reliability Theory: Models, Statistical Methods and Applications. Wiley-Interscience, Hoboken (2004)

    MATH  Google Scholar 

  21. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 224(4), 253–265 (2010)

    Article  MATH  Google Scholar 

  22. Suresh, P.V., Babar, A.K., Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets Syst. 83, 135–141 (1996)

    Article  Google Scholar 

  23. Tröger, P., Becker, F., Salfner, F.: Fuzztrees - failure analysis with uncertainties. In: 2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing, pp. 263–272 (2013)

    Google Scholar 

  24. Walley, P.: Measures of uncertainty in expert systems. Artif. Intell. 83(1), 1–58 (1996)

    Article  MathSciNet  Google Scholar 

  25. Walter, M., Gouberman, A., Riedl, M., Schuster, J., Siegle, M.: Lares — a novel approach for describing system reconfigurability in dependability models of fault-tolerant systems. In: Proceedings of European Safety and Reliability Conference (ESREL 2009) (2009)

    Google Scholar 

  26. Xiang, F., Machida, F., Tadano, K., Yanoo, K., Sun, W., Maeno, Y.: A static analysis of dynamic fault trees with priority-and gates. In: 2013 Sixth Latin-American Symposium on in Dependable Computing (LADC), pp. 58–67 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Jakobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jakobs, C., Tröger, P., Werner, M. (2016). Configurable Fault Trees. In: Crnkovic, I., Troubitsyna, E. (eds) Software Engineering for Resilient Systems. SERENE 2016. Lecture Notes in Computer Science(), vol 9823. Springer, Cham. https://doi.org/10.1007/978-3-319-45892-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45892-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45891-5

  • Online ISBN: 978-3-319-45892-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics