Skip to main content

Camera-Agnostic Monocular SLAM and Semi-dense 3D Reconstruction

  • Conference paper
  • First Online:
Book cover Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

  • 2102 Accesses

Abstract

This paper discusses localisation and mapping techniques based on a single camera. After introducing the given problem, which is known as monocular SLAM, a new camera agnostic monocular SLAM system (CAM-SLAM) is presented. It was developed within the scope of this work and is inspired by recently proposed SLAM-methods. In contrast to most other systems, it supports any central camera model such as for omnidirectional cameras. Experiments show that CAM-SLAM features similar accuracy as state-of-the-art methods, while being considerably more flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or a set of cameras with non-overlapping images.

  2. 2.

    As long as it is possible to extract and track salient image features.

  3. 3.

    One could argue that this is an implicit epipolar check, since the re-projected position is located on the epipolar line.

References

  1. Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. Int. J. Comput. Vis. 35(2), 175–196 (1999)

    Article  Google Scholar 

  2. Bunschoten, R., Krse, B.: Robust scene reconstruction from an omnidirectional vision system. IEEE Trans. Robot. Autom. 19(2), 351–357 (2003)

    Article  Google Scholar 

  3. Burbridge, C., Spacek, L., Condell, J., Nehmzow, U.: Monocular omnidirectional vision based robot localisation and mapping. In: Proceedings of the TAROS (2008)

    Google Scholar 

  4. Civera, J., Davison, A.J., Montiel, J.: Inverse depth parametrization for monocular slam. IEEE Trans. Robot. 24(5), 932–945 (2008)

    Article  Google Scholar 

  5. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proceedings of Ninth IEEE International Conference on Computer Vision, pp. 1403–1410. IEEE (2003)

    Google Scholar 

  6. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014)

    Google Scholar 

  7. Gamallo, C., Mucientes, M., Regueiro, C.V.: A FastSLAM-based algorithm for omnidirectional cameras. J. Phys. Agents 7, 12–21 (2013)

    Google Scholar 

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  9. Geyer, C., Daniilidis, K.: Catadioptric camera calibration. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 398–404. IEEE (1999)

    Google Scholar 

  10. Gutierrez, D., Rituerto, A., Montiel, J.M.M., Guerrero, J.J.: Adapting a real-time monocular visual slam from conventional to omnidirectional cameras. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 343–350. IEEE (2011)

    Google Scholar 

  11. Hartley, R., Gupta, R., Chang, T.: Stereo from uncalibrated cameras. In: 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings CVPR 1992, pp. 761–764, June 1992

    Google Scholar 

  12. Horn, B.K., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. JOSA A, 5(7), 1127–1135 (1988)

    Google Scholar 

  13. Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2009, Washington, DC, pp. 83–86. IEEE Computer Society (2009)

    Google Scholar 

  14. Labrosse, F.: The visual compass: performance and limitations of an appearance-based method. J. Field Robot. 23(10), 913–941 (2006)

    Article  Google Scholar 

  15. Lhuillier, M.: Effective and generic structure from motion using angular error. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 67–70 (2006)

    Google Scholar 

  16. Mei, C., Rives, P.: Single view point omnidirectional camera calibration from planar grids. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3945–3950. IEEE (2007)

    Google Scholar 

  17. Mei, C., Sibley, G., Newman, P.: Closing loops without places. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3738–3744. IEEE (2010)

    Google Scholar 

  18. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Application VISSAPP 2009, pp. 331–340. INSTICC Press (2009)

    Google Scholar 

  19. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. Submitted to IEEE Trans. Robot. (2015). arXiv preprint arXiv:1502.00956

  20. Mur-Artal, R., Tards, J.D.: Probabilistic semi-dense mapping from highly accurate feature-based monocular slam. In Robotics: Science and Systems (2015)

    Google Scholar 

  21. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  22. Peri, V., Nayar, S.K.: Generation of perspective and panoramic video from omnidirectional video. In: Proceedings of DARPA Image Understanding Workshop, vol. 1, pp. 243–245. Citeseer (1997)

    Google Scholar 

  23. Phan, K.D., Ovchinnikov, A.V.: Indoor slam using an omnidirectional camera. Middle East J. Sci. Res. 16(1), 88–94 (2013)

    Google Scholar 

  24. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Comput. Graph. Image Process. 1(3), 244–256 (1972)

    Article  Google Scholar 

  25. Recker, S., Hess-Flores, M., Joy, K.I.: Statistical angular error-based triangulation for efficient and accurate multi-view scene reconstruction. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 68–75. IEEE (2013)

    Google Scholar 

  26. Rituerto, A., Puig, L., Guerrero, J.J.: Visual slam with an omnidirectional camera. In: 20th International Conference on Pattern Recognition (ICPR), pp. 348–351. IEEE (2010)

    Google Scholar 

  27. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. 24(5), 1015–1026 (2008)

    Article  Google Scholar 

  28. Scaramuzza, D.: Omnidirectional vision: from calibration to robot motion estimation. PhD thesis. Citeseer (2008)

    Google Scholar 

  29. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5695–5701. IEEE (2006)

    Google Scholar 

  30. Schoenbein, M., Geiger, A.: Omnidirectional 3D reconstruction in augmented manhattan worlds. In: International Conference on Intelligent Robots and Systems, pp. 716–723, Chicago. IEEE, October 2014

    Google Scholar 

  31. Schnbein, M., Strauss, T., Geiger, A.: Calibrating and centering quasi-central catadioptric cameras. In: International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  32. Strasdat, H., Davison, A.J., Montiel, J.M.M., Konolige, K.: Double window optimisation for constant time visual slam. In: IEEE International Conference on Computer Vision (ICCV), pp. 2352–2359, November 2011

    Google Scholar 

  33. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  34. Sturm, P.: Camera models and fundamental concepts used in geometric computer vision. Found. Trends Comput. Graph. Vis. 6(1–2), 1–183 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Martin Rünz has been partly supported by the SecondHands project, funded from the EU Horizon 2020 Research and Innovation programme under grant agreement No. 643950.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rünz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Rünz, M., Neuhaus, F., Winkens, C., Paulus, D. (2016). Camera-Agnostic Monocular SLAM and Semi-dense 3D Reconstruction. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics