Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints

  • Matthias ZislerEmail author
  • Stefania Petra
  • Claudius Schnörr
  • Christoph Schnörr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9796)


We present a non-convex variational approach to non-binary discrete tomography which combines non-local projection constraints with a continuous convex relaxation of the multilabeling problem. Minimizing this non-convex energy is achieved by a fixed point iteration which amounts to solving a sequence of convex problems, with guaranteed convergence to a critical point. A competitive numerical evaluation using standard test-datasets demonstrates a significantly improved reconstruction quality for noisy measurements from a small number of projections.


Data Term Convex Relaxation Discrete Tomography Integrality Constraint Noiseless Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

419026_1_En_21_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (pdf 1596 KB)


  1. 1.
    Aarle, W., Palenstijn, W., Beenhouwer, J., Altantzis, T., Bals, S., Batenburg, K., Sijbers, J.: The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47 (2015)CrossRefGoogle Scholar
  2. 2.
    Batenburg, K., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Proc. 20(9), 2542–2553 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bushberg, J., Seibert, J., Leidholdt, E., Boone, J.: The Essential Physics of Medical Imaging, 3rd edn. Wolters Kluwer, Philadelphia (2011)Google Scholar
  4. 4.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Denitiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase transitions and cosparse tomographic recovery of compound solid bodies from few projections. Fundamenta Informaticae 135, 73–102 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Goris, B., Broek, W., Batenburg, K., Mezerji, H., Bals, S.: Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012)CrossRefGoogle Scholar
  7. 7.
    Hanke, R., Fuchs, T., Uhlmann, N.: X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Methods Phys. Res. Sect. A Accelerators, Spectrometers, Detectors Assoc. Equip. 591(1), 14–18 (2008)CrossRefGoogle Scholar
  8. 8.
    Herman, G., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kappes, J.H., Petra, S., Schnörr, C., Zisler, M.: TomoGC: binary tomography by constrained graphcuts. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 262–273. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Klann, E., Ramlau, R.: Regularization properties of mumford-shah-type functionals with perimeter and norm constraints for linear ill-posed problems. SIAM J. Imaging Sci. 6(1), 413–436 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: Proceedings of the IEEE Conference on Computer Vision (ICCV 2009) Kyoto, Japan, vol. 1, pp. 646–653 (2009)Google Scholar
  12. 12.
    Maeda, S., Fukuda, W., Kanemura, A., Ishii, S.: Maximum a posteriori X-ray computed tomography using graph cuts. J. Phys. Conf. Ser. 233, 012023 (2010)CrossRefGoogle Scholar
  13. 13.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Natterer, F.: The Mathematics of Computerized Tomography, 1 edn. Society for Industrial and Applied Mathematics, Philadelphia (2001).
  15. 15.
    Dinh, T.P., Bernoussi, S.: Algorithms for solving a class of nonconvex optimization problems. methods of subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization. North-Holland Mathematics Studies, vol. 129, pp. 249–271. North-Holland, Amsterdam (1986)CrossRefGoogle Scholar
  16. 16.
    Dinh, T., Hoai An, L.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnamica 22(1), 289–355 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 810–817, June 2009Google Scholar
  18. 18.
    Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Phil. Soc. 48, 106–109 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ramlau, R., Ring, W.: A mumford-shah level-set approach for the inversion and segmentation of X-ray tomography data. J. Comput. Phys. 221(2), 539–557 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  21. 21.
    Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discrete Appl. Math. 151(13), 229–243 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sidky, E.Y., Pan, X.: Image Reconstruction in Circular Cone-Beam Computed Tomography by Constrained, Total-Variation Minimization. Phys. Med. Biol. 53(17), 4777 (2008)CrossRefGoogle Scholar
  23. 23.
    Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the potts model. Inverse Probl. 31(2), 025003 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tuysuzoglu, A., Karl, W., Stojanovic, I., Castanon, D., Unlu, M.: Graph-cut based discrete-valued image reconstruction. IEEE Trans. Image Process. 24(5), 1614–1627 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Varga, L., Balázs, P., Nagy, A.: An energy minimization reconstruction algorithm for multivalued discrete tomography. In: 3rd International Symposium on Computational Modeling of Objects Represented in Images, Rome, Italy, Proceedings, pp. 179–185. Taylor & Francis (2012)Google Scholar
  27. 27.
    Weber, S.: Discrete tomography by convex-concave regularization using linear and quadratic optimization. Ph.D. thesis, Ruprecht-Karls-Universität, Heidelberg, Germany (2009)Google Scholar
  28. 28.
    Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electron. Notes Discrete Math. 12, 243–254 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV 2008, Konstanz, Germany, 8–10 October 2008, pp. 243–252 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matthias Zisler
    • 1
    Email author
  • Stefania Petra
    • 1
  • Claudius Schnörr
    • 1
  • Christoph Schnörr
    • 1
  1. 1.Heidelberg UniversityHeidelbergGermany

Personalised recommendations