Skip to main content

Hunting for Black Swans in the European Banking Sector Using Extreme Value Analysis

  • Conference paper
  • First Online:
Advanced Modelling in Mathematical Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 189))

Abstract

In financial risk management, a Black Swan refers to an event that is deemed improbable yet has massive consequences. In this communication we propose a way to investigate if the recent financial crisis was a Black Swan event for a given bank based on weekly closing prices and derived log-returns. More specifically, using techniques from extreme value methodology we estimate the tail behavior of the negative log-returns over two specific horizons:

  • Pre-crisis: from January 1, 1994 until August 7, 2007 (often referred to as the official starting date of the credit crunch crisis);

  • Post-crisis: from August 8, 2007 until September 23, 2014 (the cut-off date of our study).

We illustrate this approach with Barclays and Credit Suisse data, and argue that Barclays can be considered as having experienced a Black Swan and Credit Suisse not. We then link the differences in tail risk behavior between these banks with capitalization and leverage indicators. We emphasize the statistical methods for modeling univariate extremes linked with graphical support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beirlant, J., Vynckier, P., Teugels, J.L.: Tail index estimation, Pareto quantile plots and regression diagnostics. J. Am. Stat. Assoc. 91, 1659–1667 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applications. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  3. Beirlant, J., Schoutens, W., Segers, J.: Mandelbrot’s extremism. Wilmott Magazine, pp. 97–103 (2005)

    Google Scholar 

  4. Beirlant, J., Joossens, E., Segers, J.: Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. J. Stat. Plann. Infer. 139, 2800–2815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollerslev, T., Todorov, V.: Tails, fears and risk premia. J. Financ. 66, 2165–2211 (2011)

    Article  Google Scholar 

  6. Castillo, E., Hadi, A., Balakrishnan, N., Sarabia, J.: Extreme Value and Related Models with Applications in Engineering and Science. Wiley, Hoboken, NJ (2005)

    MATH  Google Scholar 

  7. Coles, S.: An Introduction to Statistical Modelling of Extreme Calues. Springer Series in Statistics, Springer, London (2001)

    Book  Google Scholar 

  8. de Haan, L.: On regular variation and its applications to the weak convergence of sample extremes. Mathematical Centre Tract 32, Amsterdam (1970)

    Google Scholar 

  9. de Haan, L.: Slow variation and characterization of domains of attraction. In: de Oliveira, T. (ed.) Statistical Extremes and Applications, D, pp. 31–48. Reidel, Dordrecht (1984)

    Chapter  Google Scholar 

  10. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer Science and Business Media, LLC, New York, NY (2006)

    Book  MATH  Google Scholar 

  11. Einmahl, J.H.J., Zhou, C., de, Haan, L.: Statistics of heteroscedastic extremes. J. R. Stat. Soc. Ser. B. Stat. Methodol 78(1), 31–51 (2016)

    Google Scholar 

  12. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin, Heidelberg (1997)

    Book  MATH  Google Scholar 

  13. Hall, P.: On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B Stat. Methodol 44, 37–42 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsing, T.: On tail index estimation using dependent data. Ann. Statist. 19, 1547–1569 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Reiss, R.D., Thomas, M.: Statistical Analysis of Extreme Values, with Applications to Insurance, Finance, Hydrology and Other Fields, 2nd edn. Birkhaüser, Basel (2001)

    MATH  Google Scholar 

  18. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York, NY (2007)

    MATH  Google Scholar 

  19. Sun, P., Zhou, C.: Diagnosing the distribution of GARCH innovations. J. Empir. Financ. 29, 287–303 (2014)

    Article  Google Scholar 

  20. Weissman, I.: Estimation of parameters and large quantiles based on the \(k\) largest observations. J. Am. Stat. Assoc. 73, 812–815 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Klaus Herrmann is supported by IAP Research Network P7/06 of the Belgian State (Belgian Science Policy), and the project GOA/12/014 of the KU Leuven Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Beirlant .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of the Scale Estimators \(\hat{A}_{k,n}\) and \(\hat{A}^{EP}_{k,n}\)

Starting from the Hall model (7) and ignoring the second order terms yields the approximation

$$\begin{aligned} \bar{F} (x) \sim Ax^{-1/\xi }, \text{ as } x \rightarrow \infty . \end{aligned}$$
(15)

Alternatively, for intermediate order statistics \(X_{n-k,n}\), the tail probability \(\bar{F} (X_{n-k,n})\) can be estimated by the empirical probability \(k/n\approx (k+1)/(n+1)\), leading to the defining equation

$$\begin{aligned} \hat{A}_{k,n} X_{n-k,n}^{-1/H_{k,n}} = \frac{k+1}{n+1}, \end{aligned}$$

where \(\xi \) in (15) is estimated by the Hill estimator \(H_{k,n}\). This immediately gives (12).

In order to reduce the bias in estimating the scale parameter, \(\xi \) first needs to be estimated by the EPD estimator \(\hat{\xi }_{k,n}\) to lift up the bias caused by the estimation of \(\xi \). The other source of bias originates from ignoring the second order terms when approximating A. Following a similar reasoning as before, now taking the second order terms into account, the defining equation is

$$\begin{aligned} \hat{A}X_{n-k,n}^{-1/\hat{\xi }_{k,n}}\left( 1+ b X_{n-k,n}^{-\beta }(1+o(1)) \right) = \frac{k+1}{n+1}. \end{aligned}$$

Since \(\kappa = \kappa _t = \xi b t^{-\beta }(1+o(1))\), we can estimate \( b X_{n-k,n}^{-\beta }(1+o(1))\) by \(\hat{\kappa }_{k,n}/\hat{\xi }_{k,n}\) with \(\hat{\kappa }_{k,n}\) the EPD estimator for \(\kappa \) at the threshold \(t=X_{n-k,n}\). In order to obtain numerically stable results, we can use that \((1+\kappa _t/\xi )^{-1}\sim 1-\kappa _t/\xi \) since \(\kappa _t \rightarrow 0\) as \(t \rightarrow \infty \), which leads to the bias reduced scale estimator in (13).

Appendix 2: Proofs for Sect. 3

Proof

(Proof of Theorem 1)

Remark that

$$ \sqrt{k} \left( \log \hat{A}_{k,n} -\log A \right) = T_{k,n}^{(1)}+ T_{k,n}^{(2)}, $$

with

$$\begin{aligned} T_{k,n}^{(1)}= & {} \sqrt{k} \left( \frac{ \log X_{n-k,n}}{H_{k,n} }- \frac{\log U(n/k)}{\xi }\right) \\ T_{k,n}^{(2)}= & {} \sqrt{k} \left( \frac{\log U(n/k)}{\xi } + \log \left( \frac{k+1}{n+1}\right) - \log A \right) . \end{aligned}$$

First, as \(U(x) = A^{\xi }x^{\xi } (1+ \xi b A^{-\xi \beta }x^{-\xi \beta }(1+o(1))\) when \(x \rightarrow \infty \),

$$ T_{k,n}^{(2)} = -\sqrt{k}B(n/k)\frac{1}{\xi \beta }(1+o(n/k)), $$

as \(n/k\rightarrow \infty \). Next, with \(\tilde{H}_{k,n} := \frac{1}{k}\sum _{j=1}^k (\log X_{n-j+1,n}- \log U(n/k))\) and \(\mathbb {E}(\tilde{H}_{k,n}) = \xi + B(n/k)/(1+\xi \beta )\), see Hsing [15], we get

$$\begin{aligned} T_{k,n}^{(1)}= & {} -\frac{\log U(n/k)}{H_{k,n} \xi }\sqrt{k} \left( H_{k,n}- \xi \right) + \frac{\sqrt{k}}{H_{k,n}} (\log X_{n-k,n}-\log U(n/k)) \\= & {} -\frac{\log U(n/k)}{H_{k,n} \xi }\sqrt{k} \left( \tilde{H}_{k,n}- \mathbb {E}(\tilde{H}_{k,n}) \right) \\&+ \,\frac{1}{H_{k,n}} \left( \frac{\log U(n/k)}{\xi } +1\right) \sqrt{k} (\log X_{n-k,n}-\log U(n/k)) \\&- \,\frac{\log U(n/k)}{H_{k,n} \xi }\frac{\sqrt{k} B(n/k)}{1+\xi \beta }. \end{aligned}$$

Hence,

$$\begin{aligned} \sqrt{k} \left( \log \hat{A}_{k,n} -\log A \right)= & {} -\frac{\log U(n/k)}{H_{k,n} \xi }\sqrt{k} \left( \tilde{H}_{k,n}- \mathbb {E}(\tilde{H}_{k,n}) \right) \\&+\, \frac{1}{H_{k,n}} \left( \frac{\log U(n/k)}{\xi } +1\right) \sqrt{k} (\log X_{n-k,n}-\log U(n/k)) \\&- \,\frac{1}{\xi }\left( \frac{\log U(n/k)}{H_{k,n} (1+\beta \xi )}+ \frac{1}{\beta } \right) \sqrt{k} B(n/k) . \end{aligned}$$

Using the fact that \(\log U(n/k)/ \log (n/k) \rightarrow \xi \) as \(n/k \rightarrow \infty \), the result now follows from Lemma 2.1 and Corollary 3.4 in Hsing [15]. \(\square \)

Proof

(Proof of Theorem 2)

Using the approach from Beirlant et al. [4], we have with \(\kappa _n = \kappa (X_{n-k,n})\)

$$\begin{aligned} k^{-1/2}Z_{k,n}:= & {} \frac{n}{k}\bar{F}(X_{n-k,n})-1 \\= & {} \frac{ A }{(k/n)X_{n-k,n}^{1/\xi }}\left( 1+ \frac{\kappa _n}{\xi } (1+o_p(1))\right) -1 \\= & {} \frac{A}{\hat{A}_{k,n}^{EP}} X_{n-k,n}^{1/\hat{\xi }_{k,n}-1/\xi } \left( 1+ \frac{\kappa _n}{\xi } (1+o_p(1))\right) \left( 1- \frac{\hat{\kappa }_{k,n}}{\hat{\xi }_{k,n}}\right) -1 \\= & {} \frac{A}{\hat{A}_{k,n}^{EP}}\left( 1-\frac{1}{\xi \hat{\xi }_{k,n}} (\hat{\xi }_{k,n}-\xi )\log X_{n-k,n} (1+o_p(1))\right) \\&\qquad \qquad \quad \times \left( 1+ \{\frac{\kappa _n}{\xi }-\frac{\hat{\kappa }_{k,n}}{\hat{\xi }_{k,n}} \} (1+o_p(1))\right) -1, \end{aligned}$$

from which it follows, using \(\hat{\kappa }_{k,n}-\kappa _n = O_p(k^{-1/2})\) and \(\hat{\xi }_{k,n}-\xi = O_p(k^{-1/2})\) from Theorem 3.1 in Beirlant et al. [4],

$$\begin{aligned}&\!\!\!\! \frac{A}{\hat{A}_{k,n}^{EP}}-1 \\= & {} \frac{k^{-1/2}Z_{k,n}+1}{\left( 1- \frac{\hat{\xi }_{k,n}-\xi }{\xi \hat{\xi }_{k,n}}\log X_{n-k,n} (1+o_p(1))\right) \left( 1+ \{\frac{\kappa _n}{\xi }-\frac{\hat{\kappa }_{k,n}}{\hat{\xi }_{k,n}} \} (1+o_p(1))\right) }-1 \\= & {} (k^{-1/2}Z_{k,n}+1) \left( 1+\frac{1}{\xi \hat{\xi }_{k,n}} (\hat{\xi }_{k,n}-\xi )\log X_{n-k,n} (1+o_p(1)) \right) \\&\qquad \qquad \quad \times \left( 1- \{\frac{\kappa _n}{\xi }-\frac{\hat{\kappa }_{k,n}}{\hat{\xi }_{k,n}} \} (1+o_p(1)) \right) -1. \end{aligned}$$

This implies that \(\sqrt{k}(A/\hat{A}^{EP}_{k,n}-1)\) has the same limit distribution as

$$ \frac{\log U(n/k)}{\xi ^2} \sqrt{k}(\hat{\xi }_{k,n}-\xi ) - \xi ^{-1}\sqrt{k}(\hat{\kappa }_{k,n}-\kappa _n)+Z_{k,n}. $$

From Theorem 3.1 in Beirlant et al. [4] it follows that this stochastic sum is asymptotically unbiased when \(\sqrt{k} B(n/k) \rightarrow \lambda \), while the asymptotic variance follows from the variance of \(\hat{\xi }_{k,n}\) which has the asymptotic dominating coefficient \(\log U(n/k)/\xi ^2\) in this asymptotic representation. \(\square \)

Appendix 3: The Dependence Between Tests on Scale and Shape

We now derive the asymptotic covariance matrix of

$$\begin{aligned} \left( \frac{\xi \sqrt{k}}{\log U\left( \frac{n}{k}\right) }(\log \hat{A}_{k,n}-\log A), \sqrt{k} \left( \frac{H_{k,n}}{\xi }-1\right) \right) . \end{aligned}$$

From

$$\begin{aligned} \frac{\log X_{n-k,n}}{H_{k,n}}-\frac{\log U\left( \frac{n}{k}\right) }{\xi } = \frac{1}{\xi } \left( \log X_{n-k,n}-\log U\left( \frac{n}{k}\right) \right) - \frac{ \log X_{n-k,n}}{\xi H_{k,n}} (H_{k,n}-\xi ), \end{aligned}$$

we have using the notation from the proof of Theorem 1 that

$$\begin{aligned} \frac{\xi T_{k,n}^{(1)} }{\log U\left( \frac{n}{k}\right) }&= \sqrt{k}\left( \frac{\log X_{n-k,n} - \log U\left( \frac{n}{k}\right) }{\log U\left( \frac{n}{k}\right) }\right) -\sqrt{k} \left( \frac{H_{k,n}-\xi }{H_{k,n}}\right) \frac{\log X_{n-k,n}}{\log U(n/k)}\\&\sim _p \sqrt{k}\left( \frac{\log X_{n-k,n} - \log U\left( \frac{n}{k}\right) }{\log U\left( \frac{n}{k}\right) }\right) -\sqrt{k} \frac{H_{k,n}-\xi }{\xi }. \end{aligned}$$

We hence have concerning the asymptotic covariance

$$\begin{aligned} Acov\left( \frac{\xi T_{k,n}^{(1)} }{\log U\left( \frac{n}{k}\right) },\sqrt{k} \frac{H_{k,n}-\xi }{\xi }\right)&= Acov\left( \sqrt{k}\frac{\log X_{n-k,n} - \log U\left( \frac{n}{k}\right) }{\log U\left( \frac{n}{k}\right) } ,\sqrt{k} \frac{H_{k,n}-\xi }{\xi }\right) \\&\quad - Avar\left( \sqrt{k} \frac{H_{k,n}-\xi }{\xi }\right) . \end{aligned}$$

From (11) we know that the asymptotic variance in this expression is asymptotically equal to \(1+\chi +\omega -2\psi \).

$$\begin{aligned} Acov\left( \frac{\xi T_{k,n}^{(1)} }{\log U\left( \frac{n}{k}\right) },\sqrt{k} \frac{H_{k,n}-\xi }{\xi }\right)&= \frac{k}{\xi \log U\left( \frac{n}{k}\right) }Acov\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) , H_{k,n}- \xi \right) \\&\quad - (1+\chi +\omega -2\psi ). \end{aligned}$$

Following Hsing [15], approximating \(H_{k,n}\) by \( H^+_{k,n} - \left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) \right) \) with \(H^+_{k,n}=\frac{1}{k} \sum _{j=1}^k \max \{\log X_{n-j+1,n} - \log U\left( \frac{n}{k}\right) ,0\}\), we find

$$\begin{aligned} k\,Acov\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) , H_{k,n}- \xi \right)&\approx k\, Acov\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) ,H^+_{k,n}-\xi \right) \\&- k\, Avar\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) \right) . \end{aligned}$$

From Corollary 3.4 in Hsing [15] it then follows that

$$\begin{aligned} k\, Acov\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) , H_{k,n}^+- \xi \right)&= \xi ^2 (1+\psi ),\\ k\, Avar\left( \log X_{n-k,n} - \log U\left( \frac{n}{k}\right) \right)&= \xi ^2(1+\omega ), \end{aligned}$$

which results in

$$\begin{aligned} Acov\left( \frac{\xi T_{k,n}^{(1)} }{\log U\left( \frac{n}{k}\right) },\sqrt{k} \frac{H_{k,n}-\xi }{\xi }\right)&= \frac{\xi }{\log U\left( \frac{n}{k}\right) }(\psi -\omega ) -(1+\chi +\omega -2\psi ). \end{aligned}$$

Since \( T_{k,n}^{(2)}\) is deterministic it does not play a role in the calculation of the covariance matrix. We then get

$$\begin{aligned} Acov\left( \frac{\xi \sqrt{k}}{\log U\left( \frac{n}{k}\right) }(\log \hat{A}_{k,n}-\log A),\sqrt{k} \frac{H_{k,n}-\xi }{\xi } \right) = -(1+\chi +\omega -2\psi ) + \frac{\xi }{\log U\left( \frac{n}{k}\right) }(\psi -\omega ). \end{aligned}$$

Using the obtained expression for the asymptotic variance of both components (see Theorem 1 and (11)) and the fact that \(\log U\left( \frac{n}{k}\right) / \log (n/k) \rightarrow \xi \) as \(n/k \rightarrow \infty \) gives the asymptotic covariance matrix of

\(\left( \frac{\xi \sqrt{k}}{\log U\left( \frac{n}{k}\right) }(\log \hat{A}_{k,n}-\log A),\sqrt{k} \left( \frac{H_{k,n}}{\xi }-1 \right) \right) \):

$$\begin{aligned}&\begin{pmatrix} 1+\chi +\omega -2\psi &{} -(1+\chi +\omega -2\psi ) + \frac{\psi -\omega }{\log \left( \frac{n}{k}\right) }\\ -(1+\chi +\omega -2\psi ) + \frac{\psi -\omega }{\log \left( \frac{n}{k}\right) } &{} 1+\chi +\omega -2\psi \end{pmatrix} \nonumber \\= & {} (1+\chi + \omega -\psi ) \begin{pmatrix} {-}1 &{} -1 \\ -1 &{} {-}1 \end{pmatrix} + \frac{\psi -\omega }{\log \left( \frac{n}{k}\right) } \begin{pmatrix} 0 &{} 1 \\ 1 &{} 0 \end{pmatrix}. \end{aligned}$$
(16)

Appendix 4: 3D Plots of p-values for Tests

Figs. 11 and 12

Fig. 11
figure 11

p-values for testing differences in shape using \(T^{(\xi )}_{k_1,k_2,n_1,n_2}\) for all possible choices of \(k_1\) and \(k_2\) for pre- and post-crisis negative log-returns for Barclays and Credit Suisse

Fig. 12
figure 12

p-values for testing differences in scale using \(T^{(A)}_{k_1,k_2,n_1,n_2}\) for all possible choices of \(k_1\) and \(k_2\) for pre- and post-crisis negative log-returns for Barclays and Credit Suisse

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Beirlant, J., Schoutens, W., De Spiegeleer, J., Reynkens, T., Herrmann, K. (2016). Hunting for Black Swans in the European Banking Sector Using Extreme Value Analysis. In: Kallsen, J., Papapantoleon, A. (eds) Advanced Modelling in Mathematical Finance. Springer Proceedings in Mathematics & Statistics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-45875-5_7

Download citation

Publish with us

Policies and ethics