Skip to main content

Mitochondria Are the Main Cellular Source of O2 , H2O2 and Oxidative Stress

  • Chapter
  • First Online:
Biochemistry of Oxidative Stress

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 16))

Abstract

Mitochondria reduce about 1–2 % of the O2 consumed in the tissues to O2 that is dismutated in the mitochondrial matrix by the Mn-SOD reaction to O2 and H2O2. O2 as a charged and non permeable species is confined into the mitochondrial matrix where is kept at a steady state level of 10−10 M. After dismutation, non charged H2O2 freely diffuses to the cytosol, where it is kept at about 10−7 M by catalase and glutathione peroxidase. In the cytosol H2O2 encounters Fe2+ (and Cu+), suffers homolysis by the Fenton/Haber-Weiss reaction, and produces the highly reactive HO. This radical immediately abstracts one hydrogen atom from unsaturated fatty acids and starts the process of lipoperoxidation, in an open and non-equilibrium situation as long there are unsaturated fatty acids and O2. The free-radical mediated oxidations of phospholipids, proteins and nucleic acids are a consequence of aerobic life. Increased oxidations define the oxidative stress situation. Then, mitochondria are the main cellular source of O2 , of H2O2 and of oxidative stress in the cell. The cellular metabolisms of O2 , H2O2, NO and ONOO are integrated and faster rates of free-radical mediated reactions are considered the molecular mechanisms of pathological processes and of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerschman R, Gilbert D, Nye SW et al (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science 119:623–626

    Article  CAS  PubMed  Google Scholar 

  2. Michaelis L (1946) Fundamentals of oxidation and respiration. Am Sci 34:573–596

    CAS  PubMed  Google Scholar 

  3. Mann PJG, Quastel JH (1946) Toxic effects of oxygen and of hydrogen peroxide on brain metabolism. Biochem J 40:139–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  5. McCord JM, Keele BB Jr, Fridovich I (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A 68:1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seim S (1982) Production of reactive oxygen species and chemiluminescence by human monocytes during differentiation and lymphokine activation in vitro. Acta Pathol Microbiol Immunol Scand C 90:179–185

    CAS  PubMed  Google Scholar 

  7. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boveris A, Costa LE, Cadenas E (1999) The mitochondrial production of oxygen radicals and cellular aging. In: Packer L, Cadenas E (eds) Understanding the process of aging. Marcel Dekker Inc, New York, pp 1–16

    Google Scholar 

  9. Loschen G, Flohé L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    Article  CAS  PubMed  Google Scholar 

  10. Cadenas E, Boveris A (1980) Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem J 188:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gajavelli S, Kentaro S, Diaz J et al (2015) Glucose and oxygen metabolism after penetrating ballistic-like brain injury. J Cereb Blood Flow Metab 35:773–780

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adamo AM, Llesuy SF, Pasquini JM, Boveris A (1989) Brain chemiluminescence and oxidative stress in hyperthyroid rats. Biochem J 263:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loschen G, Azzi A, Richter C, Flohé L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72

    Article  CAS  PubMed  Google Scholar 

  14. Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54:311–314

    Article  CAS  PubMed  Google Scholar 

  15. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dionisi O, Galeotti T, Terranova T, Azzi A (1975) Superoxide radicals and hydrogen peroxide formation in mitochondria from normal and neoplastic tissues. Biochim Biophys Acta 403:292–300

    Article  CAS  PubMed  Google Scholar 

  17. Margulis L (1996) Archaeal-eubacterial mergers in the origin of eukarya: phylogenetic classification of life. Proc Natl Acad Sci U S A 93:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and the effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    Article  CAS  PubMed  Google Scholar 

  21. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  CAS  PubMed  Google Scholar 

  22. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  23. Boveris A, Cadenas E, Reiter R et al (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci U S A 77:347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, 3rd edn. Worth Publishers, New York

    Google Scholar 

  25. Dawson AG (1979) Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells. Trends Biochem Sci 4:171–176

    Article  CAS  Google Scholar 

  26. Jequier E, Acheson K, Schutz Y (1987) Assessment of energy expenditure and fuel utilization in man. Ann Rev Nutr 7:187–208

    Article  CAS  Google Scholar 

  27. Boveris A, Repetto M, Bustamante J et al (2008) The concept of oxidative stress in pathology. In: Alvarez S, Evelson P, Boveris A (eds) Free radical pathophysiology. Research Signpost, Kerala, pp 1–17

    Google Scholar 

  28. Cadenas E, Giulivi C, Ursini F et al (1994) Electronically-excited state formation during lipid peroxidation. Methods Toxicol 1B:384–399

    CAS  Google Scholar 

  29. Repetto M, Boveris A (2012) Transition metals: bioinorganic and redox reactions in biological systems. In: Mishra A (ed) Transition metals: characteristics, properties and uses. Nova Science Publihers, Hauppauge, pp 349–370

    Google Scholar 

  30. Sies H (1985) Introductory remarks. In: Sies H (ed) Oxidative stress. Academic, London

    Google Scholar 

  31. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–38

    Article  Google Scholar 

  32. Gonzalez Flecha B, Cutrin JC, Boveris A (1993) Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion. J Clin Invest 91:456–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sies H, Jones DP (2007) Oxidative Stress. In: Fink G (ed) Encyclopedia of stress, vol 3, 2nd edn. Elsevier, Amsterdam, pp 45–48

    Chapter  Google Scholar 

  34. Kemp M, Go Y, Jones DP (2008) Non equilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox system biology. Free Radic Biol Med 44:921–937

    Article  CAS  PubMed  Google Scholar 

  35. Jaeschke H, Gores GJ, Cederbaum AI et al (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176

    Article  CAS  PubMed  Google Scholar 

  36. Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    Article  CAS  PubMed  Google Scholar 

  37. Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Article  CAS  PubMed  Google Scholar 

  38. Arnér ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  39. Halliwell B, Gutteridge J (1989) Lipid peroxidation: a radical chain reaction. In: Free Radical Biology and Medicine, 2nd edn. Clarendon, Oxford, pp 188–276

    Google Scholar 

  40. Musacco-Sebio R, Ferrarotti N, Saporito-Magriñá C et al (2014) Rat brain oxidative damage in iron and copper overloads. Metallomics 6:1410–1416

    Article  CAS  PubMed  Google Scholar 

  41. Semprine J, Ferrarotti N, Musacco-Sebio R et al (2014) Brain antioxidant response to iron and copper acute intoxications in rats. Metallomics 6:2083–2089

    Article  CAS  PubMed  Google Scholar 

  42. Gorlach A, Dimova E, Petry A et al (2015) Reactive oxygen species, nutrition, hipoxia and diseases: problems solved? Redox Biol 6:372–385

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043

    Article  CAS  PubMed  Google Scholar 

  44. Niki E (2000) Oxidative stress and aging. Intern Med 39:324–326

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida Y, Saito Y, Hayakawa M et al (2007) Levels of lipid peroxidation in human plasma and erythrocytes: comparison between fatty acids and cholesterol. Lipids 42:439–449

    Article  CAS  PubMed  Google Scholar 

  46. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  47. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78:7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Navarro A, Sanchez-Pino MJ, Gomez C et al (2007) Dietary thioproline decreases spontaneous food intake and increases survival and neurological function in mice. Antiox Redox Signal 9:131–141

    Article  CAS  Google Scholar 

  49. Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60:308–314

    Article  CAS  PubMed  Google Scholar 

  50. Jin K (2010) Modern biological theories of aging. Aging Dis 1:72–74

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Mg. Rosario Mussaco Sebio and to Mg. Christian Saporito Magriña for their successful experimental work that produced four publications on the toxicity of Fe and Cu overloads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Boveris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boveris, A., Repetto, M.G. (2016). Mitochondria Are the Main Cellular Source of O2 , H2O2 and Oxidative Stress. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_3

Download citation

Publish with us

Policies and ethics