Skip to main content

Mitochondrial Dynamics Regulates Oxidative Metabolism in Leydig Tumor Cells

  • Chapter
  • First Online:
Biochemistry of Oxidative Stress

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 16))

  • 1561 Accesses

Abstract

Steroidogenesis in Leydig cells is predominantly regulated by trophic hormone LH, whose signaling pathway involves PKA activation. PKA-mediated phosphorylation is involved in the induction and activation of steroidogenic acute regulatory (StAR) protein, which in turn activates the delivery of cholesterol from the outer to the inner mitochondrial membrane, the rate-limiting step in the biosynthesis of all steroid hormones. The access of cholesterol to the inner mitochondrial membrane allows its conversion to pregnenolone by cytochrome P450 side-chain cleavage enzyme. StAR-mediated access of cholesterol to the mitochondria and pregnenolone synthesis are common steps in the hormone-stimulated biosynthesis of steroid hormones. Mitochondria are cellular organelles with crucial roles including ATP synthesis, metabolic integration, ROS synthesis and apoptosis, all processes linked to steroidogenesis rates. Mitochondrial dynamics is then key to normal cell movement and function. In this context, this chapter focuses on reviewing the contribution of mitochondrial dynamics to Leydig cell function and metabolism, including efficient steroid production, and intends to highlight the mechanisms underlying mitochondrial changes and the correct localization of key mitochondrial proteins to achieve maximal steroidogenesis after hormone stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascoli M (1996) Contemporary endocrinology: the leydig cell in health and disease. In: Contemporary endocrinology: the leydig cell in health and disease. Humana Press Inc., Totowa, pp 373–381

    Google Scholar 

  2. Cooke BA, Choi MC, Dirami G et al (1992) Control of steroidogenesis in Leydig cells. J Steroid Biochem Mol Biol 43:445–449

    Article  CAS  PubMed  Google Scholar 

  3. Saez JM (1994) Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev 15:574–626

    Article  CAS  PubMed  Google Scholar 

  4. Garren LD, Gill GN, Masui H et al (1971) On the mechanism of action of ACTH. Recent Prog Horm Res 27:433–478

    CAS  PubMed  Google Scholar 

  5. Crivello JF, Jefcoate CR (1980) Intracellular movement of cholesterol in rat adrenal cells. Kinetics and effects of inhibitors. J Biol Chem 255:8144–8151

    CAS  PubMed  Google Scholar 

  6. Crivello JF, Gill GN (1983) Induction of cultured bovine adrenocortical zona glomerulosa cell 17-hydroxylase activity by ACTH. Mol Cell Endocrinol 30:97–107

    Article  CAS  PubMed  Google Scholar 

  7. Jefcoate CR, McNamara BC, Artemenko I et al (1992) Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Mol Biol 43:751–767

    Article  CAS  PubMed  Google Scholar 

  8. Privalle CT, Crivello JF, Jefcoate CR (1983) Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A 80:702–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jefcoate C (2002) High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J Clin Invest 110:881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95

    Article  CAS  PubMed  Google Scholar 

  11. Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244

    CAS  PubMed  Google Scholar 

  12. Stocco DM, Sodeman TC (1991) The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem 266:19731–19738

    CAS  PubMed  Google Scholar 

  13. Arakane F, King SR, Du Y et al (1997) Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem 272:32656–32662

    Article  CAS  PubMed  Google Scholar 

  14. LeHoux JG, Fleury A, Ducharme L et al (2004) Phosphorylation of the hamster adrenal steroidogenic acute regulatory protein as analyzed by two-dimensional polyacrylamide gel electrophoresis. Mol Cell Endocrinol 215:127–134

    Article  CAS  PubMed  Google Scholar 

  15. Clark BJ, Wells J, King SR et al (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269:28314–28322

    CAS  PubMed  Google Scholar 

  16. Clark BJ, Soo SC, Caron KM et al (1995) Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol Endocrinol 9:1346–1355

    CAS  PubMed  Google Scholar 

  17. Manna PR, Dyson MT, Jo Y et al (2009) Role of dosage-sensitive sex reversal, adrenal hypoplasia congenita, critical region on the X chromosome, gene 1 in protein kinase A- and protein kinase C-mediated regulation of the steroidogenic acute regulatory protein expression in mouse Leydig tumor cells: mechanism of action. Endocrinology 150:187–199

    Article  CAS  PubMed  Google Scholar 

  18. Stocco DM, Wang X, Jo Y et al (2005) Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19:2647–2659

    Article  CAS  PubMed  Google Scholar 

  19. Castillo AF, Fan J, Papadopoulos V et al (2011) Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells. PLoS One 6:e22822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Artemenko IP, Zhao D, Hales DB et al (2001) Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J Biol Chem 276:46583–46596

    Article  CAS  PubMed  Google Scholar 

  21. Castilla R, Gadaleta M, Castillo AF et al (2008) New enzymes involved in the mechanism of action of epidermal growth factor in a clonal strain of Leydig tumor cells. Endocrinology 149:3743–3752

    Article  CAS  PubMed  Google Scholar 

  22. Wang XJ, Shen CL, Dyson MT et al (2006) The involvement of epoxygenase metabolites of arachidonic acid in cAMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Endocrinol 190:871–878

    Article  CAS  PubMed  Google Scholar 

  23. Wang XJ, Dyson MT, Jo Y et al (2003) Involvement of 5-lipoxygenase metabolites of arachidonic acid in cyclic AMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J Steroid Biochem Mol Biol 85:159–166

    Article  CAS  PubMed  Google Scholar 

  24. Maloberti P, Castilla R, Castillo AF et al (2005) Silencing the expression of mitochondrial acyl-CoA thioesterase I and acyl-CoA synthetase 4 inhibits hormone-induced steroidogenesis. FEBS J 272:1804–1814

    Article  CAS  PubMed  Google Scholar 

  25. Castillo AF, Cornejo Maciel F, Castilla R et al (2006) cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells. FEBS J 273:5011–5021

    Article  CAS  PubMed  Google Scholar 

  26. Martin SJ (2011) Mitochondrial fusion: bax to the fussure. Dev Cell 20:142–143

    Article  CAS  PubMed  Google Scholar 

  27. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  28. Herzig S, Martinou JC (2008) Mitochondrial dynamics: to be in good shape to survive. Curr Mol Med 8:131–137

    Article  CAS  PubMed  Google Scholar 

  29. Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880

    Article  CAS  PubMed  Google Scholar 

  30. Yaffe MP (1999) Dynamic mitochondria. Nat Cell Biol 1:149–150

    Article  Google Scholar 

  31. Rossignol R, Gilkerson R, Aggeler R et al (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  CAS  PubMed  Google Scholar 

  32. Mishra P, Varuzhanyan G, Pham AH et al (2015) Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metab 22:1033–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  CAS  PubMed  Google Scholar 

  34. Rojo M, Legros F, Chateau D et al (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674

    CAS  PubMed  Google Scholar 

  35. de Brito OM, Scorrano L (2009) Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering: the role of Ras. Mitochondrion 9:222–226

    Article  PubMed  CAS  Google Scholar 

  36. Vance JE, Vance DE (2004) Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 82:113–128

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi T, Rizzuto R, Hajnoczky G et al (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rizzuto R, Pinton P, Brini M et al (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199

    Article  CAS  PubMed  Google Scholar 

  39. Lewin TM, Van Horn CG, Krisans SK et al (2002) Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys 404:263–270

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katajisto P, Dohla J, Chaffer CL et al (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Zhang J, Yu M et al (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 40:4814–4824

    Article  CAS  Google Scholar 

  43. Ferreira-da-Silva A, Valacca C, Rios E et al (2015) Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 10:e0122308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Qian W, Choi S, Gibson GA et al (2012) Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 125:5745–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang JX, Li Q, Li PF (2009) Apoptosis repressor with caspase recruitment domain contributes to chemotherapy resistance by abolishing mitochondrial fission mediated by dynamin-related protein-1. Cancer Res 69:492–500

    Article  CAS  PubMed  Google Scholar 

  46. Han XJ, Yang ZJ, Jiang LP et al (2015) Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells. Int J Oncol 46:691–700

    CAS  PubMed  Google Scholar 

  47. Jia Y, Zhou L, Tian C et al (2015) Dynamin-related protein 1 is involved in micheliolide-induced breast cancer cell death. Onco Targets Ther 8:3371–3381

    Article  PubMed  PubMed Central  Google Scholar 

  48. Merrill RA, Dagda RK, Dickey AS et al (2011) Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 9:e1000612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qi X, Disatnik MH, Shen N et al (2011) Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol Biol Cell 22:256–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  CAS  PubMed  Google Scholar 

  51. Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4:468–478

    Article  CAS  PubMed  Google Scholar 

  52. Perfettini JL, Roumier T, Kroemer G (2005) Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol 15:179–183

    Article  CAS  PubMed  Google Scholar 

  53. Griparic L, van der Wel NN, Orozco IJ et al (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798

    Article  CAS  PubMed  Google Scholar 

  54. Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14:R283–R289

    Article  CAS  PubMed  Google Scholar 

  55. Smirnova E, Griparic L, Shurland DL et al (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cartoni R, Leger B, Hock MB et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Benard G, Bellance N, James D et al (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  CAS  PubMed  Google Scholar 

  58. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  CAS  PubMed  Google Scholar 

  59. Misko A, Jiang S, Wegorzewska I et al (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30:4232–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zuchner S, Mersiyanova IV, Muglia M et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451

    Article  PubMed  CAS  Google Scholar 

  61. Sebastian D, Hernandez-Alvarez MI, Segales J et al (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109:5523–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee S, Sterky FH, Mourier A et al (2012) Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet 21:4827–4835

    Article  CAS  PubMed  Google Scholar 

  63. Pham AH, Meng S, Chu QN et al (2012) Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 21:4817–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pareyson D (1999) Charcot-Marie-Tooth disease and related neuropathies: molecular basis for distinction and diagnosis. Muscle Nerve 22:1498–1509

    Article  CAS  PubMed  Google Scholar 

  65. Boerkoel CF, Takashima H, Garcia CA et al (2002) Charcot-Marie-Tooth disease and related neuropathies: mutation distribution and genotype-phenotype correlation. Ann Neurol 51:190–201

    Article  CAS  PubMed  Google Scholar 

  66. Goldenthal MJ (2016) Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev 21:137–155

    Article  CAS  PubMed  Google Scholar 

  67. Pich S, Bach D, Briones P et al (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14:1405–1415

    Article  CAS  PubMed  Google Scholar 

  68. Mourier A, Motori E, Brandt T et al (2015) Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol 208:429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao N, Zhang Y, Liu Q et al (2015) Mfn2 affects embryo development via mitochondrial dysfunction and apoptosis. PLoS One 10:e0125680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Soto EA, Kliman HJ, Strauss JF et al (1986) Gonadotropins and cyclic adenosine 3′,5′-monophosphate (cAMP) alter the morphology of cultured human granulosa cells. Biol Reprod 34:559–569

    Article  CAS  PubMed  Google Scholar 

  71. Li D, Sewer MB (2010) RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 151:4313–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gak IA, Radovic SM, Dukic AR et al (2015) Stress triggers mitochondrial biogenesis to preserve steroidogenesis in Leydig cells. Biochim Biophys Acta 1853:2217–2227

    Article  CAS  PubMed  Google Scholar 

  73. Duarte A, Poderoso C, Cooke M et al (2012) Mitochondrial fusion is essential for steroid biosynthesis. PLoS One 7:e45829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allen JA, Shankara T, Janus P et al (2006) Energized, polarized, and actively respiring mitochondria are required for acute Leydig cell steroidogenesis. Endocrinology 147:3924–3935

    Article  CAS  PubMed  Google Scholar 

  75. Acton BM, Jurisicova A, Jurisica I et al (2004) Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod 10:23–32

    Article  CAS  PubMed  Google Scholar 

  76. King SR, Liu Z, Soh J et al (1999) Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) protein. J Steroid Biochem Mol Biol 69:143–154

    Article  CAS  PubMed  Google Scholar 

  77. Song Z, Chen H, Fiket M et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mattenberger Y, James DI, Martinou JC (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett 538:53–59

    Article  CAS  PubMed  Google Scholar 

  79. Mikkola R, Saris NE, Grigoriev PA et al (1999) Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of B. cereus. Eur J Biochem 263:112–117

    Article  CAS  PubMed  Google Scholar 

  80. Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752

    Article  CAS  PubMed  Google Scholar 

  81. Duarte A, Castillo AF, Castilla R et al (2007) An arachidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells. FEBS Lett 581:4023–4028

    Article  CAS  PubMed  Google Scholar 

  82. Diemer T, Allen JA, Hales KH et al (2003) Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144:2882–2891

    Article  CAS  PubMed  Google Scholar 

  83. Rone MB, Midzak AS, Issop L et al (2012) Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol 26:1868–1882

    Article  CAS  PubMed  Google Scholar 

  84. Bose M, Whittal RM, Miller WL et al (2008) Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem 283:8837–8845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tu LN, Morohaku K, Manna PR et al (2014) Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis. J Biol Chem 289:27444–27454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baines CP, Zhang J, Wang GW et al (2002) Mitochondrial PKC-epsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC-epsilon-MAPK interactions and differential MAPK activation in PKC-epsilon-induced cardioprotection. Circ Res 90:390–397

    Article  CAS  PubMed  Google Scholar 

  87. Alonso M, Melani M, Converso DP et al (2004) Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem 89:248–256

    Article  CAS  PubMed  Google Scholar 

  88. Poderoso C, Converso DP, Maloberti P et al (2008) A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis. PLoS One 3:e1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jefcoate CR, Lee J, Cherradi N et al (2011) cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol Cell Endocrinol 336:53–62

    Article  CAS  PubMed  Google Scholar 

  90. Clem BF, Hudson EA, Clark BJ (2005) Cyclic adenosine 3′,5′-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology 146:1348–1356

    Article  CAS  PubMed  Google Scholar 

  91. Gyles SL, Burns CJ, Whitehouse BJ et al (2001) ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J Biol Chem 276:34888–34895

    Article  CAS  PubMed  Google Scholar 

  92. Hirakawa T, Ascoli M (2003) The lutropin/choriogonadotropin receptor-induced phosphorylation of the extracellular signal-regulated kinases in leydig cells is mediated by a protein kinase a-dependent activation of ras. Mol Endocrinol 17:2189–2200

    Article  CAS  PubMed  Google Scholar 

  93. Manna PR, Jo Y, Stocco DM (2007) Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J Endocrinol 193:53–63

    Article  CAS  PubMed  Google Scholar 

  94. Martinelle N, Holst M, Soder O et al (2004) Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology 145:4629–4634

    Article  CAS  PubMed  Google Scholar 

  95. Seger R, Hanoch T, Rosenberg R et al (2001) The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem 276:13957–13964

    Article  CAS  PubMed  Google Scholar 

  96. Otis M, Gallo-Payet N (2007) Role of MAPKs in angiotensin II-induced steroidogenesis in rat glomerulosa cells. Mol Cell Endocrinol 265–266:126–130

    Article  PubMed  CAS  Google Scholar 

  97. Duarte A, Castillo AF, Podesta EJ et al (2014) Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One 9:e100387

    Article  PubMed  PubMed Central  Google Scholar 

  98. Papanicolaou KN, Ngoh GA, Dabkowski ER et al (2012) Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. Am J Physiol Heart Circ Physiol 302:H167–H179

    Article  CAS  PubMed  Google Scholar 

  99. Xu FY, McBride H, Acehan D et al (2010) The dynamics of cardiolipin synthesis post-mitochondrial fusion. Biochim Biophys Acta 1798:1577–1585

    Article  CAS  PubMed  Google Scholar 

  100. Zhao D, Duan H, Kim YC et al (2005) Rodent StAR mRNA is substantially regulated by control of mRNA stability through sites in the 3′-untranslated region and through coupling to ongoing transcription. J Steroid Biochem Mol Biol 96:155–173

    Article  CAS  PubMed  Google Scholar 

  101. Grozdanov PN, Stocco DM (2012) Short RNA molecules with high binding affinity to the KH motif of A-kinase anchoring protein 1 (AKAP1): implications for the regulation of steroidogenesis. Mol Endocrinol 26:2104–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. den Hertog J, Ostman A, Bohmer FD (2008) Protein tyrosine phosphatases: regulatory mechanisms. FEBS J 275:831–847

    Article  CAS  Google Scholar 

  103. Adachi M, Iwaki H, Shindoh M et al (1997) Predominant expression of the src homology 2-containing tyrosine phosphatase protein SHP2 in vascular smooth muscle cells. Virchows Arch 430:321–325

    Article  CAS  PubMed  Google Scholar 

  104. Matozaki T, Murata Y, Saito Y et al (2009) Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci 100:1786–1793

    Article  CAS  PubMed  Google Scholar 

  105. Rocchi S, Gaillard I, van Obberghen E et al (2000) Adrenocorticotrophic hormone stimulates phosphotyrosine phosphatase SHP2 in bovine adrenocortical cells: phosphorylation and activation by cAMP-dependent protein kinase. Biochem J 352:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cooke M, Orlando U, Maloberti P et al (2011) Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res 52:1936–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schimmer BP (1979) Adrenocortical Y1 cells. Meth Enzymol 58:570–574

    Article  CAS  PubMed  Google Scholar 

  108. Han JD, Rubin CS (1996) Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. Studies on murine Y1 adrenal cells. J Biol Chem 271:29211–29215

    Article  CAS  PubMed  Google Scholar 

  109. Vilgrain I, Chinn A, Gaillard I et al (1998) Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone. Biochem J 332:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manes S, Mira E, Gomez-Mouton C et al (1999) Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol Cell Biol 19:3125–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brion L, Maloberti PM, Gomez NV et al (2011) MAPK phosphatase-1 (MKP-1) expression is up-regulated by hCG/cAMP and modulates steroidogenesis in MA-10 Leydig cells. Endocrinology 152:2665–2677

    Article  CAS  PubMed  Google Scholar 

  112. Mori-Sequeiros GM, Gomez NV, Gorostizaga A et al (2013) MAP kinase phosphatase-3 (MKP-3) is transcriptionally and post-translationally up-regulated by hCG and modulates cAMP-induced p21 expression in MA-10 Leydig cells. Mol Cell Endocrinol 371:174–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Poderoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poderoso, C., Paz, C., Helfenberger, K.E., Podestá, E.J. (2016). Mitochondrial Dynamics Regulates Oxidative Metabolism in Leydig Tumor Cells. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_25

Download citation

Publish with us

Policies and ethics