Skip to main content

Oxidative Stress Influence in the Development of Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Biochemistry of Oxidative Stress

Abstract

This review addresses pulmonary arterial hypertension (PAH), an incurable disease that determines high morbidity and mortality. Diagnosis is usually performed at advanced stages of the disease, because symptoms are unspecific. Treatment is expensive and do not promote reversion of the disease, only demonstrates some improvement in patients quality of life. Oxidative stress is one of the mechanisms involved in the pathogenesis of PAH, contributing to the development of pulmonary vascular remodeling and consequent increase of pulmonary pressure. This results in an enhanced right ventricle (RV) afterload, determining RV hypertrophy which progresses to RV failure. Literature has shown increased oxidative stress not only in pulmonary vessels, but also in lungs and RV of pulmonary hypertensive patients and experimental animals. The use of experimental models has contributed to the understanding of the pathophysiology of PAH, and to the development of new therapeutic strategies. Therapeutics focused on the modulation of oxidative stress has been considered very promising. Some of these therapeutic interventions constitute of substances that modulate gene expression promoting antioxidant adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jansa P, Jarkovsky J, Al-Hiti H et al (2014) Epidemiology and long-term survival of pulmonary arterial hypertension in the Czech Republic: a retrospective analysis of a nationwide registry. BMC Pulm Med 14:45

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoeper MM, Humbert M, Souza R et al (2016) A global view of pulmonary hypertension. Lancet 4:S2213–S2600

    Google Scholar 

  3. Hoeper MM, Liu X, Panaglia V et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:D42–D50

    Article  PubMed  Google Scholar 

  4. Schermuly RT, Kreisslmeier KP, Ghofrani HA et al (2004) Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Resp Crit Care Med 169:39–45

    Article  PubMed  Google Scholar 

  5. Chin KM, Rubin LJ (2008) Pulmonary arterial hypertension. J Am Coll Cardiol 51:1527–1538

    Article  PubMed  Google Scholar 

  6. Groepenhoff H, Vonk-Hoordegraaf A, Veerdonk MCV (2013) Prognostic relevance of changes in exercise test variables in pulmonary arterial hypertension. PLoS One 8:e72013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matura LA, McDonough A, Carrol DL (2012) Cluster analysis of symptoms in pulmonary arterial hypertension: a pilot study. Eur J Cardiovasc Nurs 11:51–61

    Article  PubMed  Google Scholar 

  8. Rich S, Dantzker DR, Ayres SM (1987) Primary pulmonary hypertension. A national prospective study. Ann Intern Med 107:216–223

    Article  CAS  PubMed  Google Scholar 

  9. Malenfant S, Margaillan G, Loehr JE (2013) The emergence of new therapeutic targets in pulmonary hypertension: from now the near future. Expert Rev Respir Med 7:43–55

    Article  CAS  PubMed  Google Scholar 

  10. D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension: results from a national prospective registry. Ann Intern Med 115:343–349

    Article  PubMed  Google Scholar 

  11. Gurtu V, Michelakis ED (2015) Emerging therapies and future directions in pulmonary arterial hypertension. Can J Cardiol 31:489–501

    Article  PubMed  Google Scholar 

  12. Simonneau G, Gatzoulis MA, Adatia I et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  PubMed  Google Scholar 

  13. Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54

    Article  PubMed  Google Scholar 

  14. Barreto AC, Franchi SM, Pereira AC (2005) Pulmonary arterial hypertension. Pathophysiology, genetic aspects and response to the chronic use of sildenafil. Arq Bras Cardiol 85:147–154

    PubMed  Google Scholar 

  15. Peacock AJ, Murphy NF, McMurray JJ et al (2007) An epidemiological study of pulmonary arterial hypertension. Eur Resp J 30:104–109

    Article  CAS  Google Scholar 

  16. Le Pavec J, Humbert M (2009) Idiopathic, familial and anorexigen-associated pulmonary arterial hypertension. In: Humbert M, Lynch JP (eds) Pulmonary Hypertension, vol 236. CRC Press, Boca Raton, pp 151–159

    Google Scholar 

  17. Hoeper MM, Huscher D, Ghofrani HA (2013) Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol 168:871–880

    Article  PubMed  Google Scholar 

  18. Hoeper MM, Huscher D, Pittrow D (2016) Incidence and prevalence of pulmonary arterial hypertension in Germany. Int J Cardiol 203:612–613

    Article  PubMed  Google Scholar 

  19. Hoeper MM, Gibbs JSR (2014) The changing landscape of pulmonary arterial hypertension and implications for patient care. Eur Resp Rev 23:450–457

    Article  Google Scholar 

  20. Ogawa A, Ejiri K, Matsubar H (2014) Long-term patient survival with idiopathic/heritable pulmonary arterial hypertension treated at a single center in Japan. Life Sci 118:414–419

    Article  CAS  PubMed  Google Scholar 

  21. Humbert M, Sitbon O, Chaouat A et al (2010) Survival in patients with idiopathic, familial, and anorexigen – associated pulmonary arterial hypertension in the modern management era. Circulation 122:156–163

    Article  PubMed  Google Scholar 

  22. Mehari A, Valle O, Gillum R (2014) Trends in pulmonary hypertension mortality and morbidity. Pulm Med 2014:1–5

    Article  Google Scholar 

  23. Hill NS, Warburton RR, Pietras L et al (1997) Nonspecific endothelin-receptor antagonist blunts monocrotaline-induced pulmonary hypertension in rats. J Appl Physiol 83:1209–1215

    CAS  PubMed  Google Scholar 

  24. Ryan JJ, Marsboom G, Archer SL (2013) Rodent models of group 1 pulmonary hypertension. In: Humbert M, Evgenov OV, Stasch JP (eds) Pharmacotherapy of pulmonary hypertension, vol 218. Springer, Berlin, pp 107–140

    Google Scholar 

  25. Stenmark KR, Meyrick B, Galie N (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032

    Article  CAS  PubMed  Google Scholar 

  26. Colvin KL, Yeager ME (2014) Animal models of pulmonary hypertension: matching disease mechanisms to etiology of the human disease. J Pulm Resp Med 4:198–296

    Google Scholar 

  27. Brown L, Miller J, Dagger A et al (1998) Cardiac and vascular responses after monocrotaline-induced hypertrophy in rats. J Cardiovasc Pharmacol 31:108–115

    Article  CAS  PubMed  Google Scholar 

  28. Kay JM, Harris P, Heath D (1967) Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax 22:176–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheeke PR (1988) Toxicity and metabolism of pyrrolizidine alkaloids. J Anim Sci 66:2343–2350

    Article  CAS  PubMed  Google Scholar 

  30. Williams MS, Molyneux RJ (1987) Occurrence, concentration and toxicity of pyrrolizidine alkaloids in Crotalaria seeds. Weed Sci 35:476–481

    CAS  Google Scholar 

  31. Atal CK, Sawhney RS (1973) The pyrrolizidine alkaloids from Indian Crotalarias. Indian J Pharm 35:1–12

    CAS  Google Scholar 

  32. Palomino G, Vásquez R (1991) Cytogenetic studies in mexican populations of species of Crotalaria (Leguminosae - Papilionoideae). Cytologia 56:343–351

    Article  Google Scholar 

  33. Sehgal PB, Mukhopadhyay S (2007) Dysfunctional intracellular trafficking in the pathobiology of pulmonary arterial hypertension. Am J Respir Cell Mol Biol 37:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Urboniene D, Haber I, Fang YH et al (2010) Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299:L401–L412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farahmand F, Hill MF, Singal PK (2004) Antioxidant and oxidative stress changes in experimental cor pulmonale. Mol Cell Biochem 260:21–29

    Article  PubMed  Google Scholar 

  36. Schultze AE, Roth RA (1998) Chronic pulmonary hypertension the monocrotaline model and involvement of the hemostatic system. J Toxicol Environ Health B Crit Rev 1:271–346

    Article  CAS  PubMed  Google Scholar 

  37. Wilson DW, Segall HL, Pan LC (1992) Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol 22:307–325

    Article  CAS  PubMed  Google Scholar 

  38. Pan LC, Lamé MW, Morin D et al (1991) Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations. Toxicol Appl Pharmacol 110:336–346

    Article  CAS  PubMed  Google Scholar 

  39. Wilson DW, Segall HJ, Pan LC et al (1989) Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats. Microvasc Res 38:57–80

    Article  CAS  PubMed  Google Scholar 

  40. Mathew R, Zeballos GA, Tun H et al (1995) Role of nitric oxide and endothelin-1 in monocrotaline-induced pulmonary hypertension in rats. Cardiovasc Res 30:739–746

    Article  CAS  PubMed  Google Scholar 

  41. Frasch HF, Marshall C, Marshall BE (1999) Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Physiol 276:L304–L310

    CAS  PubMed  Google Scholar 

  42. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    Article  CAS  PubMed  Google Scholar 

  43. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531

    Article  CAS  PubMed  Google Scholar 

  45. Salvemini D, Wang Z, Wyatt PS et al (1996) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dias-Junior CA, Cau BA, Tanus-Santos JE (2008) Role of nitric oxide in the control of the pulmonary circulation: physiological, pathophysiological, and therapeutic implications. J Braz Pneumol 34:412–419

    Google Scholar 

  47. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potente vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

  48. Shao D, Park JE, Wort SJ (2011) The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 63:504–511

    Article  CAS  PubMed  Google Scholar 

  49. Motte S, McEntee K, Naeije R (2006) Endothelin receptor antagonists. Pharmacol Ther 110:386–414

    Article  CAS  PubMed  Google Scholar 

  50. Hynynen MM, Khalil RA (2006) The vascular endothelin system in hypertension: recent patents and discoveries. Recent Pat Cardiovasc Drug Discov 1:95–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maemura K, Kurihara H, Morita T et al (1992) Production of endothelin-1 in vascular endothelial cells is regulated by factors associated with vascular injury. Gerontology 38:29–35

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita J, Ogawa M, Nomura K et al (1993) Interleukin 6 stimulates the production of immunoreactive endothelin 1 in human breast cancer cells. Cancer Res 53:464–467

    CAS  PubMed  Google Scholar 

  53. Pedram A, Razandi M, Hu RM et al (1997) Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J Biol Chem 272:17097–17103

    Article  CAS  PubMed  Google Scholar 

  54. Zamora MA, Dempsey CE, Walchak SJ (1993) BQ123, um antagonista do receptor ETA, inibe a proliferação mediada por endotelina-1-de células do músculo liso da artéria pulmonar humana. Am J Respir Cell Mol Biol 9:429–433

    Article  CAS  PubMed  Google Scholar 

  55. Kowalczyk A, Kleniewska P, Kolodzieiczyk M et al (2015) The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp (Warsow) 63:41–52

    Article  CAS  Google Scholar 

  56. Galié N, Manes A, Branzi A (2004) The endothelin system in pulmonary arterial hypertension. Cardiovasc Res 61:227–237

    Article  PubMed  Google Scholar 

  57. Bourque SL, Davidge ST, Adam MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am J Physiol Regul Integr Comp Physiol 300:R1288–R1295

    Article  CAS  PubMed  Google Scholar 

  58. Garcia M, Kawakita K, Miotto STS (2013) O gênero Crotalaria L. (Leguminosae, Faboideae, Crotalarieae) na planície de Inundação do Alto Rio Paraná, Brasil. R Bras Bioci 11:209–226

    Google Scholar 

  59. Oishi P, Grobe A, Benavidez E et al (2006) Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am J Physiol Lung Cell Mol Physiol 290:L359–L366

    Article  CAS  PubMed  Google Scholar 

  60. Humbert M, Morrell NW, Archer SL et al (2004) Cellular and molecular pathobiology of pulmonary hypertension. J Am Coll Cardiol 43:S13–S24

    Article  Google Scholar 

  61. Aggarwal S, Gross CM, Sharma S et al (2013) Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol 3:1011–1034

    PubMed  PubMed Central  Google Scholar 

  62. Triposkiadis F, Karayannis G, Giamouzis G et al (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762

    Article  CAS  PubMed  Google Scholar 

  63. Austin ED, Lahm T, West J et al (2013) Gender, sex hormones and pulmonary hypertension. Pulm Circ 3:294–314

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bogaard HJ, Abe K, Vonk Noordegraaf A et al (2009) The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135:794–804

    Article  CAS  PubMed  Google Scholar 

  65. Hessel MH, Steendiik P, Den Abel B et al (2006) Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Physiol Heart Circ Physiol 291:H2424–H2430

    Article  CAS  PubMed  Google Scholar 

  66. Colombo R, Siqueira R, Becker CU et al (2013) Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol 91:38–44

    Article  CAS  PubMed  Google Scholar 

  67. Lüdke AR, Mosele F, Caron-Lienert R et al (2010) Modulation of monocrotaline-induced cor pulmonale by grape juice. J Cardiovasc Pharmacol 55:89–95

    Article  PubMed  Google Scholar 

  68. Siqueira R, Campos C, Colombo R et al (2011) Influence of estrogen on pulmonary arterial hypertension: role of oxidative stress. Cell Biochem Funct 29:543–548

    Article  CAS  PubMed  Google Scholar 

  69. Leichsenring-Silva F, Tavares AM, Mosele F et al (2011) Association of the time course of pulmonary arterial hypertension with changes in oxidative stress in the left ventricle. Clin Exp Pharmacol Physiol 38:804–810

    Article  CAS  PubMed  Google Scholar 

  70. Amin JK, Xiao L, Pimental DR et al (2001) Reactive oxygen species mediate α-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:131–139

    Article  CAS  PubMed  Google Scholar 

  71. Behonick GS, Novak MJ, Nealley EW et al (2001) Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol 21:S15–S22

    Article  CAS  PubMed  Google Scholar 

  72. Redout EM, Wagner MJ, Zuidwiik MJ (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781

    Article  CAS  PubMed  Google Scholar 

  73. Mosele F, Tavares AM, Colombo R (2012) Effects of purple grape juice in the redox-sensitive modulation of right ventricular remodeling in a pulmonary arterial hypertension model. J Cardiovasc Pharmacol 60:15–22

    Article  CAS  PubMed  Google Scholar 

  74. Cracowski JL, Cracowski C, Bessard G et al (2001) Increased lipid peroxidation in patients with pulmonary hypertension. Am J Respir Crit Care Med 164:1038–1042

    Article  CAS  PubMed  Google Scholar 

  75. Souza-Rabbo M, Silva LF, Auzani JA et al (2008) Effects of a chronic exercise training protocol on oxidative stress and right ventricular hypertrophy in monocrotaline-treated rats. Clin Exp Pharmacol and Physiol 35:944–948

    Article  CAS  Google Scholar 

  76. Bowers R, Cool C, Murphy RC et al (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169:764–769

    Article  PubMed  Google Scholar 

  77. Pichardo J, Palace V, Farahmand F (1999) Myocardial oxidative stress changes during compensated right heart failure in rats. Mol Cel Biochem 196:51–57

    Article  CAS  Google Scholar 

  78. Kamezaki F, Tasaki H, Yamashita K et al (2008) Gene transfer of extracellular superoxide dismutase ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med 177:219–226

    Article  CAS  PubMed  Google Scholar 

  79. Jin HF, Du SX, Zhao X et al (2008) Effects of endogenous sulfur dioxide on monocrotaline-induced pulmonary hypertension in rats. Acta Pharmacol Sin 29:1157–1166

    Article  CAS  PubMed  Google Scholar 

  80. Mathew R, Yuan N, Rosenfeld L et al (2002) Effects of monocrotaline on endothelial nitric oxide synthase expression and sulfhydryl levels in rat lungs. Heart Dis 4:152–158

    Article  CAS  PubMed  Google Scholar 

  81. Humbert M, Hossein-Ardeschir G (2015) The molecular targets of approved treatments for pulmonary arterial hypertension. Thorax 71:73–83

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sitbon O, Sattler C, Bertoletti L (2016) Initial dual oral combination therapy in pulmonary arterial hypertension. Eur Respir J 47:1727–1736

    Article  PubMed  Google Scholar 

  83. Calabrese V, Cornelius AT, Dinkova-Kostova I (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822:753–783

    Article  CAS  PubMed  Google Scholar 

  84. Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in tuning the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–1539

    Article  CAS  PubMed  Google Scholar 

  85. Colombo R, Siqueira R, Conzatti A et al (2015) Aerobic exercise promotes a decrease in right ventricle apoptotic proteins in experimental cor pulmonale. J Cardiovasc Pharmacol 66:246–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Brazilian Research Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS). Dr. Belló-Klein and Dr. Araujo are recipients of research fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriane Belló-Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belló-Klein, A., Araujo, A.S., Schenkel, P.C., de Lima Seolin, B.G. (2016). Oxidative Stress Influence in the Development of Pulmonary Arterial Hypertension. In: Gelpi, R., Boveris, A., Poderoso, J. (eds) Biochemistry of Oxidative Stress. Advances in Biochemistry in Health and Disease, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-45865-6_14

Download citation

Publish with us

Policies and ethics