Skip to main content

Probabilistic Reasoning in the Description Logic \(\mathcal {ALCP}\) with the Principle of Maximum Entropy

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9858))

Included in the following conference series:

Abstract

A central question for knowledge representation is how to encode and handle uncertain knowledge adequately. We introduce the probabilistic description logic \(\mathcal {ALCP}\) that is designed for representing context-dependent knowledge, where the actual context taking place is uncertain. \(\mathcal {ALCP}\) allows the expression of logical dependencies on the domain and probabilistic dependencies on the possible contexts. In order to draw probabilistic conclusions, we employ the principle of maximum entropy. We provide reasoning algorithms for this logic, and show that it satisfies several desirable properties of probabilistic logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The full proofs are available at the technical report [23].

  2. 2.

    https://www.fernuni-hagen.de/wbs/research/log4kr/.

  3. 3.

    http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/.

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences of semantic web ontologies. J. Web Semant. 12–13, 22–40 (2012)

    Article  Google Scholar 

  3. Barnett, O., Paris, J.B.: Maximum entropy inference with quantified knowledge. Log. J. IGPL 16(1), 85–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beierle, C., Kern-Isberner, G., Finthammer, M., Potyka, N.: Extending and completing probabilistic knowledge and beliefs without bias. KI 29(3), 255–262 (2015)

    Google Scholar 

  5. Ceylan, I.I., Rafael, P.: The Bayesian description logic \({\cal BEL}\). In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 480–494. Springer, Switzerland (2014)

    Google Scholar 

  6. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. De Bona, G., Cozman, F.G., Finger, M.: Towards classifying propositional probabilistic logics. J. Appl. Log. 12(3), 349–368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Domingos, P.M., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, Los Altos (2009)

    MATH  Google Scholar 

  9. Donini, F.M., Massacci, F.: ExpTime tableaux for \({\cal ALC}\). Artif. Intell. 124(1), 87–138 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halpern, J.Y., Koller, D.: Representation dependence in probabilistic inference. JAIR 21, 319–356 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic satisfiability. Int. J. Approx. Reason. 47(2), 125–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision: Considering Conditionals as Agents. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  14. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic conditionals. In: Proceedings of KR 2010, pp. 382–391. AAAI Press (2010)

    Google Scholar 

  15. Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1–2), 139–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klinov, P., Parsia, B.: A hybrid method for probabilistic satisfiability. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 354–368. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. JAIR 10, 380–391 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

    Article  Google Scholar 

  19. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010. AAAI Press (2010)

    Google Scholar 

  20. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Paris, J.: The Uncertain Reasoner’s Companion - A Mathematical Perspective. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Peñaloza, R., Potyka, N.: Probabilistic reasoning in the description logic ALCP with the principle of maximum entropy (full version). CoRR abs/1606.09521 (2016). http://arXiv.org/abs/1606.09521

  24. Potyka, N.: Reasoning over linear probabilistic knowledge bases with priorities. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS, vol. 9310, pp. 121–136. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  25. Potyka, N.: Relationships between semantics for relational probabilistic conditional logics. In: Computational Models of Rationality, Essays dedicated to Gabriele Kern-Isberner, pp. 332–347. College Publications (2016)

    Google Scholar 

  26. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic ontologies. In: Proceedings of URSW 2012, vol. 900, pp. 3–14. CEUR-WS (2012)

    Google Scholar 

  27. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yeung, R.W.: Information Theory and Network Coding. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Peñaloza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Peñaloza, R., Potyka, N. (2016). Probabilistic Reasoning in the Description Logic \(\mathcal {ALCP}\) with the Principle of Maximum Entropy . In: Schockaert, S., Senellart, P. (eds) Scalable Uncertainty Management. SUM 2016. Lecture Notes in Computer Science(), vol 9858. Springer, Cham. https://doi.org/10.1007/978-3-319-45856-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45856-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45855-7

  • Online ISBN: 978-3-319-45856-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics