Skip to main content

Nanomedicine for Cancer Therapy

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

Abstract

In the present book, we have focused on the cancer therapy available till date from conventional drug delivery to nanomedicine in the clinical trial. Also, the book also focused on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Cancer therapy itself is the vibrant topic, to make the topic simple and easy to understand, we have chosen breast cancer as our model system. In this book, the emphasis was on multiple drug resistance (MDR) and its mechanism, how to overcome it using nanoparticle approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.icmr.nic.in/ncrp/cancer_reg.htm.

  2. 2.

    http://www.cancer.org/acs/groups/cid/documents/webcontent/003165-pdf.pdf.

  3. 3.

    http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/risk-factors.

References

  • Agostinis, P., et al. (2011). Photodynamic therapy of cancer: An update. American Cancer Society, 61, 250–281.

    Google Scholar 

  • Ahmed, M., & Douek, M. (2013). The role of magnetic nanoparticles in the localization and treatment of breast cancer. Biomed Res Int, 281230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23936784

  • Ahmed, M., & Goldberg, S. N. (2011). Basic science research in thermal ablation. Surgical Oncology Clinics of North America, 20(2), 237–258.

    Article  Google Scholar 

  • Ai, J., et al. (2012). Folic acid as delivery vehicles: Targeting folate conjugated fluorescent nanoparticles to tumors imaging. Talanta, 101, 32–37. doi:10.1016/j.talanta.2012.07.075

  • Albanese, A., & Chan, W. C. W. (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. BT - ACS Nano, 5(7), 5478–5489. Available at: http://pubs.acs.org/doi/abs/10.1021/nn2007496\n, http://pubs.acs.org/doi/pdf/10.1021/nn2007496\n, doi:10.1021/nn2007496

  • Alexis, F., et al. (2010a). NIH Public Access, 48(Suppl 2), 1–6.

    Google Scholar 

  • Alexis, F., Pridgen, E. M., Langer, R., & Farokhzad, O. C. (2010b). Nanoparticle technologies for cancer therapy handbook of experimental pharmacology 197, 55, Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-00477-3_2

  • Alkilany, A. M., & Murphy, C. J. (2010). Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? Journal of Nanoparticle Research, 12, 2313–2333.

    Article  Google Scholar 

  • Allison, R. R., & Sibata, C. H. (2010). Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy, 7(2), 61–75.

    Google Scholar 

  • Alphandéry, E. (2014). Perspectives of breast cancer thermotherapies. Journal of Cancer, 5(6), 472–479.

    Article  Google Scholar 

  • Ando, T. (2009). The electronic properties of graphene and carbon nanotubes (pp. 17–21). October 1, 2005. Available at: http://www.natureasia.com/asia-materials/review.php?id=578

  • Ardana, A., et al. (2015). Polymeric siRNA delivery vectors: knocking down cancers with polymeric-based gene delivery systems. Journal of Chemical Technology & Biotechnology, 90(7), 1196–1208. doi:10.1002/jctb.4508

  • Arlen, P. M., et al. (2007). Combining vaccines with conventional therapies for cancer. Update on Cancer Therapeutics, 2(1), 33–39.

    Article  Google Scholar 

  • Arvizo, R., Bhattacharya, R., & Mukherjee, P. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery, 7(6), 753–763.

    Article  Google Scholar 

  • Baguley, B. C. (2010). Multiple drug resistance mechanisms in cancer. Molecular Biotechnology, 46, 308–316.

    Article  Google Scholar 

  • Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer metastasis reviews, 25(3), 409–416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16951987. Accessed January 23, 2014.

  • Bardhan, R., Lal, S., Joshi, A., & Halas, N. J. (2011). Theranostic nanoshells: From probe design to imaging and treatment of cancer. Accounts of Chemical Research, 44(10), 936–946.

    Google Scholar 

  • Bawa, R. (2014). Current issues with nanomedicines. PharmTech, 1–3.

    Google Scholar 

  • Beck, M., et al. (2015). Regional hyperthermia of the abdomen, a pilot study towards the treatment of peritoneal carcinomatosis. Radiation oncology (London, England), 10, 157. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4520203&tool=pmcentrez&rendertype=abstract

  • Beik, J., et al. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205–221. doi:10.1016/j.jconrel.2016.05.062

  • Bettinger, T., et al. (2001). Peptide-mediated RNA delivery: A novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Research, 29(18), 3882–3891.

    Article  Google Scholar 

  • Burow, M. E., et al. (1998). Differences in susceptibility to tumor necrosis factor alpha-induced apoptosis among MCF-7 breast cancer cell variants. Cancer Research, 58, 4940–4946.

    Google Scholar 

  • Cardinal, J., et al. (2008). Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 144(2), 125–132.

    Article  Google Scholar 

  • Carrara, S. (2010). Nano-bio-technology and sensing chips: New systems for detection in personalized therapies and cell biology. Sensors, 10(1), 526–543.

    Article  Google Scholar 

  • Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 1(4), 279–293.

    Article  Google Scholar 

  • Chatterjee, D. K., Diagaradjane, P., & Krishnan, S. (2011). Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic Delivery, 2(8), 1001–1014.

    Article  Google Scholar 

  • Chatterjee, D. K., Fong, L. S., & Zhang, Y. (2008). Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 60(15), 1627–1637. doi:10.1016/j.addr.2008.08.003

  • Chen, Z. G. (2010). Small-molecule delivery by nanoparticles for anticancer therapy. Trends in Molecular Medicine, 16(12), 594–602. doi:10.1016/j.molmed.2010.08.001

  • Chen, K., & Chen, X. (2011). Integrin targeted delivery of chemotherapeutics. Theranostics, 1, 189–200. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3086622&tool=pmcentrez&rendertype=abstract

  • Chen, R., et al. (2013a). Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials, 34(33), 8314–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23896004. Accessed January 24, 2014.

  • Chen, Y.-C., et al. (2013b). Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Science and Technology of Advanced Materials, 14(4), 044407. Available at: http://iopscience.iop.org/1468-6996/14/4/044407/article/

  • Chen, Q., et al. (2014). Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 35(28), 8206–8214. doi:10.1016/j.biomaterials.2014.06.013

  • Chen, Z., et al. (2016). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Letters, 370(1), 153–164. doi:10.1016/j.canlet.2015.10.010

  • Cherukula, K., et al. (2016). Multifunctional inorganic nanoparticles: Recent progress in thermal therapy and imaging. Nanomaterials, 6(4), 76. Available at: http://www.mdpi.com/2079-4991/6/4/76

  • Cherukuri, P., Glazer, E. S., & Curley, S. A. (2011). Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 62(3), 339–345.

    Google Scholar 

  • Cheung, A. Y., & Neyzari, A. (1984). Deep local hyperthermia for cancer therapy: External electromagnetic and ultrasound techniques. Cancer Research, 44, 4736s–4744s.

    Google Scholar 

  • Chen, C., & Zhang, Y. (2009). Nanowelded carbon nanotubes, from filed effect transistors to solar microsolar microcells. Nanoscience and Nanotechnology. ISBN 978-3-642-01499-4

    Google Scholar 

  • Chicheł, A., et al. (2007). Hyperthermia—Description of a method and a review of clinical applications. Reports of Practical Oncology and Radiotherapy, 12(5), 267–275. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-36048929267&partnerID=tZOtx3y1

  • Chong, C. R., & Jänne, P. A (2013). The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature medicine, 19(11), 1389–400. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4049336&tool=pmcentrez&rendertype=abstract

  • Clark, D., & Mao, L. (2012). Cancer biomarker discovery: Lectin-based strategies targeting glycoproteins. Disease Markers, 33(1), 1–10.

    Article  Google Scholar 

  • Colombo, M., et al. (2010). HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 62(2), 150–165. doi:10.1016/j.phrs.2010.01.013

  • Day, E. S., Morton, J. G., & West, J. L. (2009). Nanoparticles for thermal cancer therapy. Journal of biomechanical engineering, 131(7), 074001. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19640133. Accessed March 20, 2014.

  • Delivery, D. (2002). Drug Delivery.

    Google Scholar 

  • Dewey, W.C. (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology Biology Physics. 10(6): 787–800. https://www.ncbi.nlm.nih.gov/pubmed/6547421; http://dx.doi.org/10.1016/0360-3016(84)90379-1

  • Dizaj, S. M., Jafari, S., & Khosroushahi, A. Y. (2014). A sight on the current nanoparticle-based gene delivery vectors. Nanoscale research letters, 9(1), 252. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4046008&tool=pmcentrez&rendertype=abstract

  • Dolci, S., et al. (2015). Carbon nanomaterials as contrast agents for breast cancer diagnosis and therapy. Journal for ImmunoTherapy of Cancer, 3(Suppl 1), P5. Available at: http://jitc.biomedcentral.com/articles/10.1186/2051-1426-3-S1-P5

  • Dreaden, E. C., et al. (2009). Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: Enhanced potency and selective delivery for breast cancer treatment. Bioconjugate Chemistry, 20, 2247–2253.

    Article  Google Scholar 

  • Dumalaon-Canaria, J. A., et al. (2014). What causes breast cancer? A systematic review of causal attributions among breast cancer survivors and how these compare to expert-endorsed risk factors. Cancer Causes and Control, 25(7), 771–785.

    Article  Google Scholar 

  • Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688–701.

    Article  Google Scholar 

  • Elsadek, B., & Kratz, F. (2012). Impact of albumin on drug delivery—New applications on the horizon. Journal of Controlled Release, 157(1), 4–28. doi:10.1016/j.jconrel.2011.09.069

  • Emami, B., & Song, C. W. (1984). Physiological mechanisms in hyperthermia: A review. International Journal of Radiation Oncology Biology Physics, 10(2), 289–295.

    Article  Google Scholar 

  • Embryol, R. J. M. (2015). Carbon nanotubes for cancer therapy and neurodegenerative diseases. 56(2), 349–356.

    Google Scholar 

  • Fabian, C. J. (2007). The what, why and how of aromatase inhibitors: Hormonal agents for treatment and prevention of breast cancer. International Journal of Clinical Practice, 61(12), 2051–2063.

    Article  Google Scholar 

  • Farokhzad, O. C., Karp, J. M., & Langer, R. (2006). Nanoparticle-aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery, 3(3), 311–324.

    Article  Google Scholar 

  • Fass, L. (2008). Imaging and cancer: A review. Molecular Oncology, 2(2), 115–152.

    Article  Google Scholar 

  • Fay, F., & Scott, C. J. (2011). Antibody-targeted nanoparticles for cancer therapy R eview. Carbon, 3, 381–394.

    Google Scholar 

  • Fernandez-Fernandez, A., et al. (2012). Comparative study of the optical and heat generation properties of IR820 and indocyanine green. Molecular Imaging, 11(2), 99–113.

    Google Scholar 

  • Fitzmaurice, C., et al. (2015). The global burden of cancer 2013. JAMA Oncology, 1(4), 505. doi:10.1001/jamaoncol.2015.0735. Available at: http://oncology.jamanetwork.com/article.aspx?

  • Fuller, K., Issels, R., & Slosman, D. (1994). Cancer and the heat shock response. European Journal of Cancer, 30(12), 1884–91. Available at: http://ukpmc.ac.uk/abstract/MED/7880622

  • Gao, W., et al. (2012). Bifunctional combined Au-Fe 2O 3 nanoparticles for induction of cancer cell-specific apoptosis and real-time imaging. Biomaterials, 33, 3710–3718.

    Article  Google Scholar 

  • Gao, Y., et al. (2014). Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 32(4), pp. 761–777. doi:10.1016/j.biotechadv.2013.10.013

  • Gasselhuber, A., et al. (2012). Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivo validation. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 28(4), 337–48. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22621735

  • Gilboa, E., & Vieweg, J. (2004). Cancer immunotherapy with mRNA—Transfected dendritic cells. Immunological Reviews, 199(1), 251–263.

    Article  Google Scholar 

  • Giombini, A., et al. (2007). Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. British Medical Bulletin, 83, 379–396.

    Article  Google Scholar 

  • Giordano, S. H. (2005). A review of the diagnosis and management of male breast cancer. The Oncologist, 10(7), 471–479.

    Article  Google Scholar 

  • Glazer, E. S., & Curley, S. A. (2011). Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Therapeutic delivery, 2(10), 1325–1330. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4090036&tool=pmcentrez&rendertype=abstract

  • Goya, G. F., Asín, L., & Ibarra, M. R., (2013). Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. International Journal of Hyperthermia, 29(8), 810–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24131333

  • Gu, F. X. et al. (2007). Targeted nanoparticles for cancer therapy. Nano Today, 2(3), 14–21.

    Google Scholar 

  • Habash, R. W. Y., et al. (2006). Thermal therapy, part 2: Hyperthermia techniques. Critical Reviews in Biomedical Engineering, 34(6), 491–542.

    Article  Google Scholar 

  • Harmon, B. V., et al. (1991). The role of apoptosis in the response of cells and tumours to mild hyperthermia. International Journal of Radiation Biology, 59(2), 489–501.

    Article  Google Scholar 

  • Hawkins, M. J., Soon-Shiong, P., & Desai, N. (2008). Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 60, 876–885.

    Article  Google Scholar 

  • He, X., & Ma, N. (2014). An overview of recent advance of quantum dots for biomedical applications. Colloids and Surfaces B: Biointerfaces, 124, 118–131. doi:10.1016/j.colsurfb.2014.06.002

  • Hervault, A., & Thanh, N. T. K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553–11573. Available at: http://xlink.rsc.org/?DOI=C4NR03482A

  • Hijnen, N., Langereis, S., & Grüll, H. (2014). Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Advanced Drug Delivery Reviews, 72, 65–81. doi:10.1016/j.addr.2014.01.006

  • Hildebrandt, B. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43, 33–56.

    Article  Google Scholar 

  • Hiraoka, M., et al. (1989). Radiofrequency (RF) capacitive hyperthermia combined with radiotherapy in the treatment of abdominal and pelvic deep- seated tumors. Radiotherapy and Oncology, 16, 139–149.

    Google Scholar 

  • Hirsch, L. R., et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13549–13554.

    Article  Google Scholar 

  • Hola, K., et al. (2014). Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 9(5), 590–603. doi:10.1016/j.nantod.2014.09.004

  • Hu, M., et al. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society reviews, 35(11), 1084–94. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17057837. Accessed March 20, 2014.

  • Idris, N. M., et al. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580–1585. doi:10.1038/nm.2933

  • Iijima, S. (1991). Helical microtubules of graphite carbon. Nature 354, 56–58.

    Google Scholar 

  • Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603– 605. doi: 10.1038/363603a0

  • Iqbal, N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Molecular Biology International, 852748. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25276427

  • Issels, R. D. (2008). Hyperthermia adds to chemotherapy. European Journal of Cancer, 44(17), 2546–2554.

    Article  Google Scholar 

  • Jain, S., Hirst, D. G., & O’Sullivan, J. M. (2012). Gold nanoparticles as novel agents for cancer therapy. The British journal of radiology, 85(1010), 101–13. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473940&tool=pmcentrez&rendertype=abstract. Accessed March 20, 2014.

  • Jaque, D. et al. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494–530. Available at: http://pubs.rsc.org/en/Content/ArticleHTML/2014/NR/C4NR00708E

  • Jarosz, A., et al. (2015). Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxidative Medicine and Cellular Longevity, 2016.

    Google Scholar 

  • Jayasundar, R. (2001). Single radiofrequency source for MR and hyperthermia studies. Current Science, 80(11), 1413–1415.

    Google Scholar 

  • Kapse-Mistry, S., et al. (2014). Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology, 5(July), 1–22.

    Google Scholar 

  • Karra, N., & Benita, S. (2012). The ligand nanoparticle conjugation approach for targeted cancer therapy. Current Drug Metabolism, 13, 22–41.

    Article  Google Scholar 

  • Kemp, J. A., et al. (2015). “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Advanced Drug Delivery Reviews, 98, 3–18. doi:10.1016/j.addr.2015.10.019

  • Kim, G. J., & Nie, S. (2005). Targeted cancer nanotherapy. Materials Today, 8(8 SUPPL.), 28–33. doi:10.1016/S1369-7021(05)71034-8

  • Kok, H. P., et al. (2015a). Current state of the art of regional hyperthermia treatment planning: a review. Radiation Oncology (London, England), 10(1), 196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26383087

  • Kok, H. P., et al. (2015b). Current state of the art of regional hyperthermia treatment planning: a review. Radiation Oncology (London, England), 10(1), 196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26383087

  • Kokuryo, D., et al. (2015). Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 229–238. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1549963414004377

  • Kopeček, J. (2013). Polymer-drug conjugates: Origins, progress to date and future directions. Advanced Drug Delivery Reviews, 65(1), 49–59.

    Article  Google Scholar 

  • Kos, J., et al. (2009). Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. International Journal of Pharmaceutics, 381(2), 106–112.

    Article  Google Scholar 

  • Kossatz, S., et al. (2015). Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research: BCR, 17, 66. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4451751&tool=pmcentrez&rendertype=abstract

  • Kozissnik, B., et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 29(8), 706–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24106927

  • Kratz, F. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183. doi:10.1016/j.jconrel.2008.05.010

  • Kumar, C. S. S. R., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789–808. doi:10.1016/j.addr.2011.03.008

  • Kumar, P., & Srivastava, R. (2015a). IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer. Materials Science and Engineering: C. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0928493115302605

  • Kumar, P., & Srivastava, R. (2015b). IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. Advanced Materials, 5(69), 56162–56170. Available at: http://xlink.rsc.org/?DOI=C5RA05997F

  • Kuo, W.-S., et al. (2008). Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells. Chemical Communications (Cambridge, England), 37, 4430–4432. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18802580. Accessed March 28, 2014.

  • Lao, Y. H., Phua, K. K. L., & Leong, K. W. (2015). Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano, 9(3), 2235–2254.

    Article  Google Scholar 

  • Lavie, Y., et al. (1997). Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. Journal of Biological Chemistry, 272, 1682–1687.

    Article  Google Scholar 

  • Leamon, C. P., & Reddy, J. A. (2004). Folate-targeted chemotherapy. Advanced Drug Delivery Reviews, 56, 1127–1141.

    Article  Google Scholar 

  • Lee, Y. T. (1983). Breast carcinoma: pattern of metastasis at autopsy. Journal of Surgical Oncology, 23(3), 175–180.

    Article  Google Scholar 

  • Lee, J. H., & Nan, A. (2012). Combination drug delivery approaches in metastatic breast cancer. Journal of Drug Delivery, 2012, 1–17.

    Google Scholar 

  • Lee, J.-M., Yoon, T.-J., & Cho, Y.-S. (2013). Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Research International, 782041. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3703404&tool=pmcentrez&rendertype=abstract

  • Lee, J., et al. (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Letters, 347(1), 46–53.

    Article  Google Scholar 

  • Li, J.-L., et al. (2009). In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 274(2), 319–26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18977071. Accessed March 28, 2014.

  • Li, X., et al. (2011). Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 10(5), 817–821. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21373701. Accessed March 28, 2014.

  • Liu, Z., et al. (2008). Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 68(16), 6652–6660. Available at: http://Users/hthappy2002/Documents/Papers/2008/Liu/CancerResearch2008Liu.pdf, doi:10.1158/0008-5472.CAN-08-1468

  • Loo, C., et al. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 3(1), 33–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14750891

  • Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990–2042.

    Article  Google Scholar 

  • Lukšienė, Ž. (2003). Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. MEDICINA 39 tomas, Nr. 12(12), 1137–1150.

    Google Scholar 

  • Luo, S., et al. (2011). A review of NIR dyes in cancer targeting and imaging. Biomaterials, 32(29), 7127–7138. doi:10.1016/j.biomaterials.2011.06.024

  • Ma, Y., et al. (2013). Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 34(31), 7706–7714. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23871538. Accessed January 24, 2014.

  • Maier-Hauff, K., et al. (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-oncology, 81(1), 53–60.

    Article  Google Scholar 

  • Majd, M. H., et al. (2013). Targeted fluoromagnetic nanoparticles for imaging of breast cancer MCF-7 cells. Advanced Pharmaceutical Bulletin, 3(1), 189–195.

    Google Scholar 

  • Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30, 592–599.

    Article  Google Scholar 

  • Mallory, M., et al. (2016). Therapeutic hyperthermia: The old, the new, and the upcoming. Critical Reviews in Oncology/Hematology, 97, 56–64.

    Article  Google Scholar 

  • Mamaeva, V., et al. (2011). Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(8), 1538–1546. doi:10.1038/mt.2011.105/nature06264

  • Mao, Q., & Unadkat, J. D. (2005). Role of the breast cancer resistance protein (ABCG2) in drug transport. Cell, 7(1), 118–133.

    Google Scholar 

  • Marelli, U.K., et al. (2013). Tumor targeting via integrin ligands. Frontiers in oncology, 3(August), 222. Available at: http://journal.frontiersin.org/article/10.3389/fonc.2013.00222/abstract

  • Mehdizadeh, A., & Pandesh, S. (2013). The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers in Medical Science, 23(3), 217–228. Available at: http://link.springer.com/article/10.1007/s10103-013-1414-2. Accessed January 24, 2014.

  • Miao, W., et al. (2014). Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials, 35(13), 4058–4065. doi:10.1016/j.biomaterials.2014.01.043

  • Milgroom, A., et al. (2014). Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids and Surfaces B: Biointerfaces, 116, 652–657. doi:10.1016/j.colsurfb.2013.10.038

  • Milligan, A. J. (1984). Whole-body hyperthermia induction techniques. Cancer Research, 44(10 SUPPL.), 4869–4872.

    Google Scholar 

  • Monaco, A. M., & Giugliano, M. (2014). Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein Journal of Nanotechnology, 5, 1849–1863. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25383297

  • Morachis, J. M., Mahmoud, E. A., & Almutairi, A. (2012). Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacological Reviews, 64(3), 505–519. doi: 10.1124/pr.111.005363

  • Moran, C. H., et al. (2009). Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Research, 2(5), 400–405.

    Google Scholar 

  • Morgan, M. T., et al. (2006). Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research, 66(24), 11913–11921.

    Article  Google Scholar 

  • Nahta, R., & O’Regan, R. M. (2012). Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. Breast Cancer Research and Treatment, 135, 39–48.

    Article  Google Scholar 

  • Nanotubes, C., et al. (2009). In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 3(11), 3707–3713.

    Article  Google Scholar 

  • Nergiz, S. Z., et al. (2014). Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Applied Materials & Interfaces, 6(18), 16395–16402.

    Google Scholar 

  • Neves, F. F., Krais, J. J., & Van Rite, B. D. (2013). Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology, 24(37), 375104.

    Google Scholar 

  • Nounou, M. I., et al. (2015). Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer: Basic and Clinical Research, 9(Suppl 2), 17–34. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4589089&tool=pmcentrez&rendertype=abstract

  • O’Driscoll, L., & Clynes, M. (2006). Molecular markers of multiple drug resistance in breast cancer. Chemotherapy, 52(3), 125–129. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=2006244016

  • Oh, J., Yoon, H., & Park, J. H. (2013). Nanoparticle platforms for combined photothermal and photodynamic therapy. Biomedical Engineering Letters, 3(2), 67–73.

    Article  Google Scholar 

  • Okhai, T. A., & Smith, C. J. (2013). Principles and application of RF system for hyperthermia therapy. Hyperthermia (pp. 171–184). Available at: http://www.intechopen.com/books/hyperthermia/principles-and-application-of-rf-system-for-hyperthermia-therapy

  • Olivo, M., et al. (2010). Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals, 3(5), 1507–1529.

    Article  Google Scholar 

  • Orecchioni, M., et al. (2015). Graphene as cancer theranostic tool: Progress and future challenges. Theranostics, 5(7), 710–723. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4402495&tool=pmcentrez&rendertype=abstract

  • Ormond, A. B., & Freeman, H. S. (2013). Dye sensitizers for photodynamic therapy. Materials, 6(3), 817–840.

    Article  Google Scholar 

  • Park, H., et al. (2008). Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small (Weinheim an der Bergstrasse, Germany), 4(2), 192–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18203232. Accessed March 28, 2014.

  • Park, H., et al. (2009). Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 3(10), 2919–2926.

    Article  Google Scholar 

  • Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.

    Article  Google Scholar 

  • Phua, K. K. L., Nair, S. K., & Leong, K. W. (2014). Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale, 6(14), 7715–29. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4100211&tool=pmcentrez&rendertype=abstract

  • Phua, K. K. L., Staats, H. F., et al. (2014). Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 4, 5128. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4044635&tool=pmcentrez&rendertype=abstract

  • Piktel, E., et al. (2016). Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. Journal of Nanobiotechnology, 14(1), 39. Available at: http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0193-x

  • Porcel, E., et al. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21(8), 85103.

    Article  Google Scholar 

  • Prabhu, R. H., Patravale, V. B., & Joshi, M. D. (2015). Polymeric nanoparticles for targeted treatment in oncology: Current insights. International Journal of Nanomedicine, 10, 1001–1018.

    Google Scholar 

  • Prakash, J., & Rajamanickam, K. (2015). Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines, 3(3), 248–269. Available at: http://www.mdpi.com/2227-9059/3/3/248/

  • Rao, W., Deng, Z.-S., & Liu, J. (2010a). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), 101–116. Available at: http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,41996af914259394,0ce7d5410447ad23.html

  • Rao, W., Deng, Z.-S., & Liu, J. (2010b). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), 101–116.

    Article  Google Scholar 

  • Raoof, M., & Curley, S. A. (2011). Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma. International Journal of Hepatology, 676957. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3170837&tool=pmcentrez&rendertype=abstract

  • Raoof, M., et al. (2013). Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLoS ONE, 8(7), 1–9.

    Article  Google Scholar 

  • Rejiya, C. S., et al. (2012). Laser immunotherapy with gold nanorods causes selective killing of tumour cells. Pharmacological Research, 65(2), 261–269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22115972. Accessed January 24, 2014.

  • Roussakow, S. (2013). The history of hyperthermia rise and decline. Conference Papers in Medicine (pp. 1–40). Available at: http://www.hindawi.com/journals/cpis/2013/428027/

  • Sailor, M. J., & Park, J.-H. (2012). Hybrid nanoparticles for detection and treatment of cancer. Advanced materials (Deerfield Beach, Fla.), 24(28), 3779–802. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3517011&tool=pmcentrez&rendertype=abstract

  • Salazar, M. D. A., & Ratnam, M. (2007). The folate receptor: What does it promise in tissue-targeted therapeutics? Cancer and Metastasis Reviews, 26, 141–152.

    Article  Google Scholar 

  • Sardari, D., & Verga, N. (2011). Cancer treatment with hyperthermia. Current Cancer Treatment—Novel Beyond Conventional Approaches (pp. 455– 474). Available at: http://www.intechopen.com/books/current-cancer-treatment-novel-beyond-conventional-approaches/targeted-therapies-in-hematological-malignancies

  • Schaeublin, N. M., et al. (2011). Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 3(2), 410–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21229159. Accessed March 28, 2014.

  • Seshacharyulu, P., et al. (2013). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15–31.

    Article  Google Scholar 

  • Sharma, H., et al. (2015). Metal nanoparticles: A theranostic nanotool against cancer. Drug Discovery Today, 20(9), 1143–1151. doi: 10.1016/j.drudis.2015.05.009

  • Sharma, A., Jain, N., & Sareen, R. (2013). Nanocarriers for diagnosis and targeting of breast cancer. BioMed Research International.

    Google Scholar 

  • Sheng, Z., Hu, D., & Xue, M. (2013). Indocyanine green nanoparticles for theranostic applications. Nano-Micro Letters, 5(3), 145–150.

    Article  Google Scholar 

  • Sherlock, S. P., et al. (2011). Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano, 5(2), 1505–1512.

    Article  Google Scholar 

  • Sitohy, B., Nagy, J. A., & Dvorak, H. F. (2012). Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer research, 72(8), 1909–1914. doi: 10.1158/0008-5472.CAN-11-3406

  • Some, S., et al. (2014). Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Scientific Reports, 4, 6314. Available at: http://www.nature.com/srep/2014/140910/srep06314/full/srep06314.html

  • Song, C. W. (1984). Effect of local hyperthermiaon blood flow and microenvironment: A review. Cancer Research, 44(OCTOBER), 4721–4730.

    Google Scholar 

  • Srinivasan, S., et al. (2013). Near-infrared fluorescing IR820-chitosan conjugate for multifunctional cancer theranostic applications. Journal of Photochemistry and Photobiology B: Biology, 119, 52–59. doi:10.1016/j.jphotobiol.2012.12.008

  • Strebhardt, K., & Ullrich, A. (2008). Paul Ehrlich’ s magic bullet concept: 100 years of progress. Nature Reviews Cancer, 8(june), 473–480.

    Article  Google Scholar 

  • Sviridov, A. P., et al. (2013). Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Applied Physics Letters, 103(19), 193110.

    Article  Google Scholar 

  • Tatli, S., et al. (2012. Radiofrequency ablation: Technique and clinical applications. Diagnostic and Interventional Radiology (Ankara, Turkey), 18(5), 508–16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22407695

  • Taylor, M. J., Tanna, S., & Sahota, T. (2010). In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. Journal of Pharmaceutical Sciences, 99(10), 4215–4227.

    Article  Google Scholar 

  • Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24114523

  • Thanou, M., & Gedroyc, W. (2013). MRI-guided focused ultrasound as a new method of drug delivery. Journal of Drug Delivery, 616197. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3666208&tool=pmcentrez&rendertype=abstract

  • Tharkar, P., et al. (2014). Nanoparticulate carriers: An emerging tool for breast cancer therapy. Journal of Drug Targeting, 2330(January), 1–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25230853

  • Tu, X., et al. (2014). PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. Journal of Materials Chemistry B, 2(15), 2184–2192. doi:10.1039/C3TB21750G

  • van der Zee, J. (2002). Heating the patient: A promising approach? Annals of Oncology, 13, 1173–1184.

    Article  Google Scholar 

  • van Horssen, R., Ten Hagen, T. L. M., & Eggermont, A. M. M. (2006). TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. The Oncologist, 11, 397–408.

    Article  Google Scholar 

  • Ventola, C. L. (2012). The nanomedicine revolution: part 2: Current and future clinical applications. P & T: A Peer-Reviewed Journal for Formulary Management, 37(10), 582–591. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3474440&tool=pmcentrez&rendertype=abstract

  • Vivek, R., et al. (2014). Multifunctional HER2-Antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Applied Materials and Interfaces, 6(9), 6469–6480.

    Article  Google Scholar 

  • Wagner, V., et al. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.

    Article  Google Scholar 

  • Wang, A. Z., et al. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 8(8), 1063–1070. Available at: http://www.tandfonline.com/doi/abs/10.1517/14712598.8.8.1063

  • Wan, H., et al. (2014). Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale, 6, 8743–8753. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24954159

  • Wang, C., Cheng, L., & Liu, Z. (2013). Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, 3(5), 317–330.

    Article  Google Scholar 

  • Wardman, P. (2007). Chemical radiosensitizers for use in radiotherapy. Clinical Oncology, 19, 397–417.

    Article  Google Scholar 

  • Weigelt, B., & Reis-Filho, J. S. (2009). Histological and molecular types of breast cancer: Is there a unifying taxonomy? Nature Reviews. Clinical Oncology, 6(12), 718–730. doi:10.1038/nrclinonc.2009.166

  • Williford, J.-M., et al. (2014). Recent advances in nanoparticle-mediated siRNA delivery. Annual Review of Biomedical Engineering, 16, 347–70. Available at: http://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-071813-105119

  • Wu, D., et al. (2014). Peptide-based cancer therapy: Opportunity and challenge. Cancer Letters, 351(1), 13–22. doi:10.1016/j.canlet.2014.05.002

  • Wust, P., et al. (2002). Hyperthermia in combined treatment of cancer. The lancet Oncology, 3(8), 487–497.

    Article  Google Scholar 

  • Xia, C. Q., & Smith, P. G. (2012). Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Molecular Pharmacology, 82(6), 1008–21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22826468

  • Xiang, S.-H., et al. (2007). Monitoring temperature of a heating needle and surrounding blood during interventional whole body hyperthermia therapy. Measurement Science and Technology, 18(11), 3417–3424. Available at: http://stacks.iop.org/0957-0233/18/i=11/a=023?key=crossref.5ee3d766c2bc0559ecbd6be2a51345f1.

  • Xiang, S. H., & Liu, J. (2008). Comprehensive evaluation on the heating capacities of four typical whole body hyperthermia strategies via compartmental model. International Journal of Heat and Mass Transfer, 51(23–24), 5486–5496.

    Article  Google Scholar 

  • Xing, M., et al. (2011). DsDNA-coated quantum dots. BioTechniques, 50(C), 259–261.

    Google Scholar 

  • Xu, L., et al. (2014). Conjugated polymers for photothermal therapy of cancer. Polymer Chemistry. Available at: http://xlink.rsc.org/?DOI=c3py01196h. Accessed January 24, 2014.

  • Yamada, M., Foote, M., & Prow, T. W. (2015). Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(3), 428–445.

    Google Scholar 

  • Yan, S., et al. (2010). Topoisomerase II alpha expression and the benefit of adjuvant chemotherapy for postoperative patients with non-small cell lung cancer. BMC cancer, 10, 621. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2988758&tool=pmcentrez&rendertype=abstract

  • Yau, T., et al. (2015). Lectins with potential for anti-cancer therapy. Molecules (Basel, Switzerland), 20(3), 3791–810. Available at: http://www.mdpi.com/1420-3049/20/3/3791/htm

  • Yen, S. K., et al. (2013). Design and synthesis of polymer-functionalized NIR fluorescent dyes—Magnetic nanoparticles for bioimaging. ACS Nano, 7(8), 6796–6805.

    Article  Google Scholar 

  • Yerushalmi, R., Hayes, M. M., & Gelmon, K. A. (2009). Breast carcinoma—Rare types: Review of the literature. Annals of Oncology, 20(11), 1763–1770.

    Article  Google Scholar 

  • Yewale, C., et al. (2013). Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 34(34), 8690–8707. doi:10.1016/j.biomaterials.2013.07.100

  • Yoo, M. I., et al. (2012). Synthesis and cellular uptake of scatteredly cyclic RGDfK-conjugated superparamagnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 97, 175–181. doi:10.1016/j.colsurfb.2012.04.009

  • You, J., et al. (2012). Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. Journal of Controlled Release, 158(2), 319–328. doi:10.1016/j.jconrel.2011.10.028

  • Yousaf, M.Z., et al. (2013). Magnetic nanoparticle-based cancer nanodiagnostics. Chinese Physics B, 22(5), 058702. Available at: http://stacks.iop.org/1674-1056/22/i=5/a=058702?key=crossref.ecd587ccf0a5d91d1d623a34c5e24360

  • Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2(1), 3–44.

    Article  Google Scholar 

  • Yuan, Y., et al. (2016). Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Delivery, 7544(April), 1–26. Available at: http://www.tandfonline.com/doi/full/10.1080/10717544.2016.1178825

  • Zhang, X., Eden, H. S., & Chen, X. (2013). NIH Public Access. 159(1), 2–13.

    Google Scholar 

  • Zhang, H., Xia, H., & Zhao, Y. (2012). Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. Journal of Materials Chemistry, 22(3), 845. Available at: http://xlink.rsc.org/?DOI=c1jm14615g. Accessed March 28, 2014.

  • Zhang, W., Zhang, Z., & Zhang, Y. (2011a). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters, 6(1), 555. Available at: http://www.nanoscalereslett.com/content/6/1/555

  • Zhang, X. D., et al. (2011b). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. International Journal of Nanomedicine, 6, 2071–2081.

    Article  Google Scholar 

  • Zhao, P., et al. (2014). Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials, 35(23), 6037–6046. doi:10.1016/j.biomaterials.2014.04.019

  • Zhao, Y., et al. (2016). Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angewandte Chemie—International Edition, 55(3), 1050–1055.

    Article  Google Scholar 

  • Zheng, M., et al. (2013). Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 7(3), 2056–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23413798

  • Zhou, F., et al. (2014a). Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of biomedical optics, 14(April 2009), 021009.

    Google Scholar 

  • Zhou, H., et al. (2014b). The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials, 35(5), 1597–1607. doi:10.1016/j.biomaterials.2013.11.020

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Kumar, P., Srivastava, R. (2017). Nanomedicine for Cancer Therapy. In: Nanomedicine for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-45826-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45826-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45825-0

  • Online ISBN: 978-3-319-45826-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics