Advertisement

Nanomedicine for Cancer Therapy

  • Piyush Kumar
  • Rohit Srivastava
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In the present book, we have focused on the cancer therapy available till date from conventional drug delivery to nanomedicine in the clinical trial. Also, the book also focused on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Cancer therapy itself is the vibrant topic, to make the topic simple and easy to understand, we have chosen breast cancer as our model system. In this book, the emphasis was on multiple drug resistance (MDR) and its mechanism, how to overcome it using nanoparticle approach.

Keywords

Nanomedicine Nanoparticle Cancer Drug delivery Hyperthermia Photothermal therapy Photodynamic therapy 

References

  1. Agostinis, P., et al. (2011). Photodynamic therapy of cancer: An update. American Cancer Society, 61, 250–281.Google Scholar
  2. Ahmed, M., & Douek, M. (2013). The role of magnetic nanoparticles in the localization and treatment of breast cancer. Biomed Res Int, 281230. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23936784
  3. Ahmed, M., & Goldberg, S. N. (2011). Basic science research in thermal ablation. Surgical Oncology Clinics of North America, 20(2), 237–258.CrossRefGoogle Scholar
  4. Ai, J., et al. (2012). Folic acid as delivery vehicles: Targeting folate conjugated fluorescent nanoparticles to tumors imaging. Talanta, 101, 32–37. doi: 10.1016/j.talanta.2012.07.075
  5. Albanese, A., & Chan, W. C. W. (2011). Effect of gold nanoparticle aggregation on cell uptake and toxicity. BT - ACS Nano, 5(7), 5478–5489. Available at: http://pubs.acs.org/doi/abs/10.1021/nn2007496\n, http://pubs.acs.org/doi/pdf/10.1021/nn2007496\n, doi: 10.1021/nn2007496
  6. Alexis, F., et al. (2010a). NIH Public Access, 48(Suppl 2), 1–6.Google Scholar
  7. Alexis, F., Pridgen, E. M., Langer, R., & Farokhzad, O. C. (2010b). Nanoparticle technologies for cancer therapy handbook of experimental pharmacology 197, 55, Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-642-00477-3_2
  8. Alkilany, A. M., & Murphy, C. J. (2010). Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? Journal of Nanoparticle Research, 12, 2313–2333.CrossRefGoogle Scholar
  9. Allison, R. R., & Sibata, C. H. (2010). Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy, 7(2), 61–75.Google Scholar
  10. Alphandéry, E. (2014). Perspectives of breast cancer thermotherapies. Journal of Cancer, 5(6), 472–479.CrossRefGoogle Scholar
  11. Ando, T. (2009). The electronic properties of graphene and carbon nanotubes (pp. 17–21). October 1, 2005. Available at: http://www.natureasia.com/asia-materials/review.php?id=578
  12. Ardana, A., et al. (2015). Polymeric siRNA delivery vectors: knocking down cancers with polymeric-based gene delivery systems. Journal of Chemical Technology & Biotechnology, 90(7), 1196–1208. doi: 10.1002/jctb.4508
  13. Arlen, P. M., et al. (2007). Combining vaccines with conventional therapies for cancer. Update on Cancer Therapeutics, 2(1), 33–39.CrossRefGoogle Scholar
  14. Arvizo, R., Bhattacharya, R., & Mukherjee, P. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery, 7(6), 753–763.CrossRefGoogle Scholar
  15. Baguley, B. C. (2010). Multiple drug resistance mechanisms in cancer. Molecular Biotechnology, 46, 308–316.CrossRefGoogle Scholar
  16. Balkwill, F. (2006). TNF-alpha in promotion and progression of cancer. Cancer metastasis reviews, 25(3), 409–416. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16951987. Accessed January 23, 2014.
  17. Bardhan, R., Lal, S., Joshi, A., & Halas, N. J. (2011). Theranostic nanoshells: From probe design to imaging and treatment of cancer. Accounts of Chemical Research, 44(10), 936–946.Google Scholar
  18. Bawa, R. (2014). Current issues with nanomedicines. PharmTech, 1–3.Google Scholar
  19. Beck, M., et al. (2015). Regional hyperthermia of the abdomen, a pilot study towards the treatment of peritoneal carcinomatosis. Radiation oncology (London, England), 10, 157. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4520203&tool=pmcentrez&rendertype=abstract
  20. Beik, J., et al. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205–221. doi: 10.1016/j.jconrel.2016.05.062
  21. Bettinger, T., et al. (2001). Peptide-mediated RNA delivery: A novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Research, 29(18), 3882–3891.CrossRefGoogle Scholar
  22. Burow, M. E., et al. (1998). Differences in susceptibility to tumor necrosis factor alpha-induced apoptosis among MCF-7 breast cancer cell variants. Cancer Research, 58, 4940–4946.Google Scholar
  23. Cardinal, J., et al. (2008). Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 144(2), 125–132.CrossRefGoogle Scholar
  24. Carrara, S. (2010). Nano-bio-technology and sensing chips: New systems for detection in personalized therapies and cell biology. Sensors, 10(1), 526–543.CrossRefGoogle Scholar
  25. Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 1(4), 279–293.CrossRefGoogle Scholar
  26. Chatterjee, D. K., Diagaradjane, P., & Krishnan, S. (2011). Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic Delivery, 2(8), 1001–1014.CrossRefGoogle Scholar
  27. Chatterjee, D. K., Fong, L. S., & Zhang, Y. (2008). Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 60(15), 1627–1637. doi: 10.1016/j.addr.2008.08.003
  28. Chen, Z. G. (2010). Small-molecule delivery by nanoparticles for anticancer therapy. Trends in Molecular Medicine, 16(12), 594–602. doi: 10.1016/j.molmed.2010.08.001
  29. Chen, K., & Chen, X. (2011). Integrin targeted delivery of chemotherapeutics. Theranostics, 1, 189–200. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3086622&tool=pmcentrez&rendertype=abstract
  30. Chen, R., et al. (2013a). Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials, 34(33), 8314–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23896004. Accessed January 24, 2014.
  31. Chen, Y.-C., et al. (2013b). Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Science and Technology of Advanced Materials, 14(4), 044407. Available at: http://iopscience.iop.org/1468-6996/14/4/044407/article/
  32. Chen, Q., et al. (2014). Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 35(28), 8206–8214. doi: 10.1016/j.biomaterials.2014.06.013
  33. Chen, Z., et al. (2016). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Letters, 370(1), 153–164. doi: 10.1016/j.canlet.2015.10.010
  34. Cherukula, K., et al. (2016). Multifunctional inorganic nanoparticles: Recent progress in thermal therapy and imaging. Nanomaterials, 6(4), 76. Available at: http://www.mdpi.com/2079-4991/6/4/76
  35. Cherukuri, P., Glazer, E. S., & Curley, S. A. (2011). Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 62(3), 339–345.Google Scholar
  36. Cheung, A. Y., & Neyzari, A. (1984). Deep local hyperthermia for cancer therapy: External electromagnetic and ultrasound techniques. Cancer Research, 44, 4736s–4744s.Google Scholar
  37. Chen, C., & Zhang, Y. (2009). Nanowelded carbon nanotubes, from filed effect transistors to solar microsolar microcells. Nanoscience and Nanotechnology. ISBN 978-3-642-01499-4Google Scholar
  38. Chicheł, A., et al. (2007). Hyperthermia—Description of a method and a review of clinical applications. Reports of Practical Oncology and Radiotherapy, 12(5), 267–275. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-36048929267&partnerID=tZOtx3y1
  39. Chong, C. R., & Jänne, P. A (2013). The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature medicine, 19(11), 1389–400. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4049336&tool=pmcentrez&rendertype=abstract
  40. Clark, D., & Mao, L. (2012). Cancer biomarker discovery: Lectin-based strategies targeting glycoproteins. Disease Markers, 33(1), 1–10.CrossRefGoogle Scholar
  41. Colombo, M., et al. (2010). HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 62(2), 150–165. doi: 10.1016/j.phrs.2010.01.013
  42. Day, E. S., Morton, J. G., & West, J. L. (2009). Nanoparticles for thermal cancer therapy. Journal of biomechanical engineering, 131(7), 074001. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19640133. Accessed March 20, 2014.
  43. Delivery, D. (2002). Drug Delivery.Google Scholar
  44. Dewey, W.C. (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology Biology Physics. 10(6): 787–800. https://www.ncbi.nlm.nih.gov/pubmed/6547421;  http://dx.doi.org/10.1016/0360-3016(84)90379-1
  45. Dizaj, S. M., Jafari, S., & Khosroushahi, A. Y. (2014). A sight on the current nanoparticle-based gene delivery vectors. Nanoscale research letters, 9(1), 252. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4046008&tool=pmcentrez&rendertype=abstract
  46. Dolci, S., et al. (2015). Carbon nanomaterials as contrast agents for breast cancer diagnosis and therapy. Journal for ImmunoTherapy of Cancer, 3(Suppl 1), P5. Available at: http://jitc.biomedcentral.com/articles/10.1186/2051-1426-3-S1-P5
  47. Dreaden, E. C., et al. (2009). Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: Enhanced potency and selective delivery for breast cancer treatment. Bioconjugate Chemistry, 20, 2247–2253.CrossRefGoogle Scholar
  48. Dumalaon-Canaria, J. A., et al. (2014). What causes breast cancer? A systematic review of causal attributions among breast cancer survivors and how these compare to expert-endorsed risk factors. Cancer Causes and Control, 25(7), 771–785.CrossRefGoogle Scholar
  49. Duncan, R. (2006). Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 6(9), 688–701.CrossRefGoogle Scholar
  50. Elsadek, B., & Kratz, F. (2012). Impact of albumin on drug delivery—New applications on the horizon. Journal of Controlled Release, 157(1), 4–28. doi: 10.1016/j.jconrel.2011.09.069
  51. Emami, B., & Song, C. W. (1984). Physiological mechanisms in hyperthermia: A review. International Journal of Radiation Oncology Biology Physics, 10(2), 289–295.CrossRefGoogle Scholar
  52. Embryol, R. J. M. (2015). Carbon nanotubes for cancer therapy and neurodegenerative diseases. 56(2), 349–356.Google Scholar
  53. Fabian, C. J. (2007). The what, why and how of aromatase inhibitors: Hormonal agents for treatment and prevention of breast cancer. International Journal of Clinical Practice, 61(12), 2051–2063.CrossRefGoogle Scholar
  54. Farokhzad, O. C., Karp, J. M., & Langer, R. (2006). Nanoparticle-aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery, 3(3), 311–324.CrossRefGoogle Scholar
  55. Fass, L. (2008). Imaging and cancer: A review. Molecular Oncology, 2(2), 115–152.CrossRefGoogle Scholar
  56. Fay, F., & Scott, C. J. (2011). Antibody-targeted nanoparticles for cancer therapy R eview. Carbon, 3, 381–394.Google Scholar
  57. Fernandez-Fernandez, A., et al. (2012). Comparative study of the optical and heat generation properties of IR820 and indocyanine green. Molecular Imaging, 11(2), 99–113.Google Scholar
  58. Fitzmaurice, C., et al. (2015). The global burden of cancer 2013. JAMA Oncology, 1(4), 505. doi: 10.1001/jamaoncol.2015.0735. Available at: http://oncology.jamanetwork.com/article.aspx?
  59. Fuller, K., Issels, R., & Slosman, D. (1994). Cancer and the heat shock response. European Journal of Cancer, 30(12), 1884–91. Available at: http://ukpmc.ac.uk/abstract/MED/7880622
  60. Gao, W., et al. (2012). Bifunctional combined Au-Fe 2O 3 nanoparticles for induction of cancer cell-specific apoptosis and real-time imaging. Biomaterials, 33, 3710–3718.CrossRefGoogle Scholar
  61. Gao, Y., et al. (2014). Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 32(4), pp. 761–777. doi: 10.1016/j.biotechadv.2013.10.013
  62. Gasselhuber, A., et al. (2012). Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivo validation. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 28(4), 337–48. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22621735
  63. Gilboa, E., & Vieweg, J. (2004). Cancer immunotherapy with mRNA—Transfected dendritic cells. Immunological Reviews, 199(1), 251–263.CrossRefGoogle Scholar
  64. Giombini, A., et al. (2007). Hyperthermia induced by microwave diathermy in the management of muscle and tendon injuries. British Medical Bulletin, 83, 379–396.CrossRefGoogle Scholar
  65. Giordano, S. H. (2005). A review of the diagnosis and management of male breast cancer. The Oncologist, 10(7), 471–479.CrossRefGoogle Scholar
  66. Glazer, E. S., & Curley, S. A. (2011). Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Therapeutic delivery, 2(10), 1325–1330. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4090036&tool=pmcentrez&rendertype=abstract
  67. Goya, G. F., Asín, L., & Ibarra, M. R., (2013). Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. International Journal of Hyperthermia, 29(8), 810–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24131333
  68. Gu, F. X. et al. (2007). Targeted nanoparticles for cancer therapy. Nano Today, 2(3), 14–21.Google Scholar
  69. Habash, R. W. Y., et al. (2006). Thermal therapy, part 2: Hyperthermia techniques. Critical Reviews in Biomedical Engineering, 34(6), 491–542.CrossRefGoogle Scholar
  70. Harmon, B. V., et al. (1991). The role of apoptosis in the response of cells and tumours to mild hyperthermia. International Journal of Radiation Biology, 59(2), 489–501.CrossRefGoogle Scholar
  71. Hawkins, M. J., Soon-Shiong, P., & Desai, N. (2008). Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 60, 876–885.CrossRefGoogle Scholar
  72. He, X., & Ma, N. (2014). An overview of recent advance of quantum dots for biomedical applications. Colloids and Surfaces B: Biointerfaces, 124, 118–131. doi: 10.1016/j.colsurfb.2014.06.002
  73. Hervault, A., & Thanh, N. T. K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553–11573. Available at: http://xlink.rsc.org/?DOI=C4NR03482A
  74. Hijnen, N., Langereis, S., & Grüll, H. (2014). Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Advanced Drug Delivery Reviews, 72, 65–81. doi: 10.1016/j.addr.2014.01.006
  75. Hildebrandt, B. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43, 33–56.CrossRefGoogle Scholar
  76. Hiraoka, M., et al. (1989). Radiofrequency (RF) capacitive hyperthermia combined with radiotherapy in the treatment of abdominal and pelvic deep- seated tumors. Radiotherapy and Oncology, 16, 139–149.Google Scholar
  77. Hirsch, L. R., et al. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13549–13554.CrossRefGoogle Scholar
  78. Hola, K., et al. (2014). Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 9(5), 590–603. doi: 10.1016/j.nantod.2014.09.004
  79. Hu, M., et al. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society reviews, 35(11), 1084–94. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17057837. Accessed March 20, 2014.
  80. Idris, N. M., et al. (2012). In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 18(10), 1580–1585. doi: 10.1038/nm.2933
  81. Iijima, S. (1991). Helical microtubules of graphite carbon. Nature 354, 56–58.Google Scholar
  82. Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603– 605. doi:  10.1038/363603a0
  83. Iqbal, N. (2014). Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Molecular Biology International, 852748. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25276427
  84. Issels, R. D. (2008). Hyperthermia adds to chemotherapy. European Journal of Cancer, 44(17), 2546–2554.CrossRefGoogle Scholar
  85. Jain, S., Hirst, D. G., & O’Sullivan, J. M. (2012). Gold nanoparticles as novel agents for cancer therapy. The British journal of radiology, 85(1010), 101–13. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3473940&tool=pmcentrez&rendertype=abstract. Accessed March 20, 2014.
  86. Jaque, D. et al. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6(16), 9494–530. Available at: http://pubs.rsc.org/en/Content/ArticleHTML/2014/NR/C4NR00708E
  87. Jarosz, A., et al. (2015). Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxidative Medicine and Cellular Longevity, 2016.Google Scholar
  88. Jayasundar, R. (2001). Single radiofrequency source for MR and hyperthermia studies. Current Science, 80(11), 1413–1415.Google Scholar
  89. Kapse-Mistry, S., et al. (2014). Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology, 5(July), 1–22.Google Scholar
  90. Karra, N., & Benita, S. (2012). The ligand nanoparticle conjugation approach for targeted cancer therapy. Current Drug Metabolism, 13, 22–41.CrossRefGoogle Scholar
  91. Kemp, J. A., et al. (2015). “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Advanced Drug Delivery Reviews, 98, 3–18. doi: 10.1016/j.addr.2015.10.019
  92. Kim, G. J., & Nie, S. (2005). Targeted cancer nanotherapy. Materials Today, 8(8 SUPPL.), 28–33. doi: 10.1016/S1369-7021(05)71034-8
  93. Kok, H. P., et al. (2015a). Current state of the art of regional hyperthermia treatment planning: a review. Radiation Oncology (London, England), 10(1), 196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26383087
  94. Kok, H. P., et al. (2015b). Current state of the art of regional hyperthermia treatment planning: a review. Radiation Oncology (London, England), 10(1), 196. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26383087
  95. Kokuryo, D., et al. (2015). Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 229–238. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1549963414004377
  96. Kopeček, J. (2013). Polymer-drug conjugates: Origins, progress to date and future directions. Advanced Drug Delivery Reviews, 65(1), 49–59.CrossRefGoogle Scholar
  97. Kos, J., et al. (2009). Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. International Journal of Pharmaceutics, 381(2), 106–112.CrossRefGoogle Scholar
  98. Kossatz, S., et al. (2015). Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research: BCR, 17, 66. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4451751&tool=pmcentrez&rendertype=abstract
  99. Kozissnik, B., et al. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 29(8), 706–14. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24106927
  100. Kratz, F. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183. doi: 10.1016/j.jconrel.2008.05.010
  101. Kumar, C. S. S. R., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789–808. doi: 10.1016/j.addr.2011.03.008
  102. Kumar, P., & Srivastava, R. (2015a). IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer. Materials Science and Engineering: C. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0928493115302605
  103. Kumar, P., & Srivastava, R. (2015b). IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. Advanced Materials, 5(69), 56162–56170. Available at: http://xlink.rsc.org/?DOI=C5RA05997F
  104. Kuo, W.-S., et al. (2008). Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells. Chemical Communications (Cambridge, England), 37, 4430–4432. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18802580. Accessed March 28, 2014.
  105. Lao, Y. H., Phua, K. K. L., & Leong, K. W. (2015). Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano, 9(3), 2235–2254.CrossRefGoogle Scholar
  106. Lavie, Y., et al. (1997). Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. Journal of Biological Chemistry, 272, 1682–1687.CrossRefGoogle Scholar
  107. Leamon, C. P., & Reddy, J. A. (2004). Folate-targeted chemotherapy. Advanced Drug Delivery Reviews, 56, 1127–1141.CrossRefGoogle Scholar
  108. Lee, Y. T. (1983). Breast carcinoma: pattern of metastasis at autopsy. Journal of Surgical Oncology, 23(3), 175–180.CrossRefGoogle Scholar
  109. Lee, J. H., & Nan, A. (2012). Combination drug delivery approaches in metastatic breast cancer. Journal of Drug Delivery, 2012, 1–17.Google Scholar
  110. Lee, J.-M., Yoon, T.-J., & Cho, Y.-S. (2013). Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Research International, 782041. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3703404&tool=pmcentrez&rendertype=abstract
  111. Lee, J., et al. (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Letters, 347(1), 46–53.CrossRefGoogle Scholar
  112. Li, J.-L., et al. (2009). In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Letters, 274(2), 319–26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18977071. Accessed March 28, 2014.
  113. Li, X., et al. (2011). Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 10(5), 817–821. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21373701. Accessed March 28, 2014.
  114. Liu, Z., et al. (2008). Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 68(16), 6652–6660. Available at: http://Users/hthappy2002/Documents/Papers/2008/Liu/CancerResearch2008Liu.pdf, doi: 10.1158/0008-5472.CAN-08-1468
  115. Loo, C., et al. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 3(1), 33–40. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14750891
  116. Lucky, S. S., Soo, K. C., & Zhang, Y. (2015). Nanoparticles in photodynamic therapy. Chemical Reviews, 115(4), 1990–2042.CrossRefGoogle Scholar
  117. Lukšienė, Ž. (2003). Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. MEDICINA 39 tomas, Nr. 12(12), 1137–1150.Google Scholar
  118. Luo, S., et al. (2011). A review of NIR dyes in cancer targeting and imaging. Biomaterials, 32(29), 7127–7138. doi: 10.1016/j.biomaterials.2011.06.024
  119. Ma, Y., et al. (2013). Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 34(31), 7706–7714. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23871538. Accessed January 24, 2014.
  120. Maier-Hauff, K., et al. (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-oncology, 81(1), 53–60.CrossRefGoogle Scholar
  121. Majd, M. H., et al. (2013). Targeted fluoromagnetic nanoparticles for imaging of breast cancer MCF-7 cells. Advanced Pharmaceutical Bulletin, 3(1), 189–195.Google Scholar
  122. Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30, 592–599.CrossRefGoogle Scholar
  123. Mallory, M., et al. (2016). Therapeutic hyperthermia: The old, the new, and the upcoming. Critical Reviews in Oncology/Hematology, 97, 56–64.CrossRefGoogle Scholar
  124. Mamaeva, V., et al. (2011). Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Molecular Therapy: The Journal of the American Society of Gene Therapy, 19(8), 1538–1546. doi: 10.1038/mt.2011.105/nature06264
  125. Mao, Q., & Unadkat, J. D. (2005). Role of the breast cancer resistance protein (ABCG2) in drug transport. Cell, 7(1), 118–133.Google Scholar
  126. Marelli, U.K., et al. (2013). Tumor targeting via integrin ligands. Frontiers in oncology, 3(August), 222. Available at: http://journal.frontiersin.org/article/10.3389/fonc.2013.00222/abstract
  127. Mehdizadeh, A., & Pandesh, S. (2013). The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers in Medical Science, 23(3), 217–228. Available at: http://link.springer.com/article/10.1007/s10103-013-1414-2. Accessed January 24, 2014.
  128. Miao, W., et al. (2014). Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials. Biomaterials, 35(13), 4058–4065. doi: 10.1016/j.biomaterials.2014.01.043
  129. Milgroom, A., et al. (2014). Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids and Surfaces B: Biointerfaces, 116, 652–657. doi: 10.1016/j.colsurfb.2013.10.038
  130. Milligan, A. J. (1984). Whole-body hyperthermia induction techniques. Cancer Research, 44(10 SUPPL.), 4869–4872.Google Scholar
  131. Monaco, A. M., & Giugliano, M. (2014). Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein Journal of Nanotechnology, 5, 1849–1863. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25383297
  132. Morachis, J. M., Mahmoud, E. A., & Almutairi, A. (2012). Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacological Reviews, 64(3), 505–519. doi:  10.1124/pr.111.005363
  133. Moran, C. H., et al. (2009). Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Research, 2(5), 400–405.Google Scholar
  134. Morgan, M. T., et al. (2006). Dendrimer-encapsulated camptothecins: Increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Research, 66(24), 11913–11921.CrossRefGoogle Scholar
  135. Nahta, R., & O’Regan, R. M. (2012). Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. Breast Cancer Research and Treatment, 135, 39–48.CrossRefGoogle Scholar
  136. Nanotubes, C., et al. (2009). In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 3(11), 3707–3713.CrossRefGoogle Scholar
  137. Nergiz, S. Z., et al. (2014). Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Applied Materials & Interfaces, 6(18), 16395–16402.Google Scholar
  138. Neves, F. F., Krais, J. J., & Van Rite, B. D. (2013). Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology, 24(37), 375104.Google Scholar
  139. Nounou, M. I., et al. (2015). Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer: Basic and Clinical Research, 9(Suppl 2), 17–34. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4589089&tool=pmcentrez&rendertype=abstract
  140. O’Driscoll, L., & Clynes, M. (2006). Molecular markers of multiple drug resistance in breast cancer. Chemotherapy, 52(3), 125–129. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=2006244016
  141. Oh, J., Yoon, H., & Park, J. H. (2013). Nanoparticle platforms for combined photothermal and photodynamic therapy. Biomedical Engineering Letters, 3(2), 67–73.CrossRefGoogle Scholar
  142. Okhai, T. A., & Smith, C. J. (2013). Principles and application of RF system for hyperthermia therapy. Hyperthermia (pp. 171–184). Available at: http://www.intechopen.com/books/hyperthermia/principles-and-application-of-rf-system-for-hyperthermia-therapy
  143. Olivo, M., et al. (2010). Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals, 3(5), 1507–1529.CrossRefGoogle Scholar
  144. Orecchioni, M., et al. (2015). Graphene as cancer theranostic tool: Progress and future challenges. Theranostics, 5(7), 710–723. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4402495&tool=pmcentrez&rendertype=abstract
  145. Ormond, A. B., & Freeman, H. S. (2013). Dye sensitizers for photodynamic therapy. Materials, 6(3), 817–840.CrossRefGoogle Scholar
  146. Park, H., et al. (2008). Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small (Weinheim an der Bergstrasse, Germany), 4(2), 192–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18203232. Accessed March 28, 2014.
  147. Park, H., et al. (2009). Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano, 3(10), 2919–2926.CrossRefGoogle Scholar
  148. Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.CrossRefGoogle Scholar
  149. Phua, K. K. L., Nair, S. K., & Leong, K. W. (2014). Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale, 6(14), 7715–29. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4100211&tool=pmcentrez&rendertype=abstract
  150. Phua, K. K. L., Staats, H. F., et al. (2014). Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 4, 5128. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4044635&tool=pmcentrez&rendertype=abstract
  151. Piktel, E., et al. (2016). Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. Journal of Nanobiotechnology, 14(1), 39. Available at: http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0193-x
  152. Porcel, E., et al. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21(8), 85103.CrossRefGoogle Scholar
  153. Prabhu, R. H., Patravale, V. B., & Joshi, M. D. (2015). Polymeric nanoparticles for targeted treatment in oncology: Current insights. International Journal of Nanomedicine, 10, 1001–1018.Google Scholar
  154. Prakash, J., & Rajamanickam, K. (2015). Aptamers and their significant role in cancer therapy and diagnosis. Biomedicines, 3(3), 248–269. Available at: http://www.mdpi.com/2227-9059/3/3/248/
  155. Rao, W., Deng, Z.-S., & Liu, J. (2010a). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), 101–116. Available at: http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,41996af914259394,0ce7d5410447ad23.html
  156. Rao, W., Deng, Z.-S., & Liu, J. (2010b). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), 101–116.CrossRefGoogle Scholar
  157. Raoof, M., & Curley, S. A. (2011). Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma. International Journal of Hepatology, 676957. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3170837&tool=pmcentrez&rendertype=abstract
  158. Raoof, M., et al. (2013). Tumor selective hyperthermia induced by short-wave capacitively-coupled RF electric-fields. PLoS ONE, 8(7), 1–9.CrossRefGoogle Scholar
  159. Rejiya, C. S., et al. (2012). Laser immunotherapy with gold nanorods causes selective killing of tumour cells. Pharmacological Research, 65(2), 261–269. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22115972. Accessed January 24, 2014.
  160. Roussakow, S. (2013). The history of hyperthermia rise and decline. Conference Papers in Medicine (pp. 1–40). Available at: http://www.hindawi.com/journals/cpis/2013/428027/
  161. Sailor, M. J., & Park, J.-H. (2012). Hybrid nanoparticles for detection and treatment of cancer. Advanced materials (Deerfield Beach, Fla.), 24(28), 3779–802. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3517011&tool=pmcentrez&rendertype=abstract
  162. Salazar, M. D. A., & Ratnam, M. (2007). The folate receptor: What does it promise in tissue-targeted therapeutics? Cancer and Metastasis Reviews, 26, 141–152.CrossRefGoogle Scholar
  163. Sardari, D., & Verga, N. (2011). Cancer treatment with hyperthermia. Current Cancer Treatment—Novel Beyond Conventional Approaches (pp. 455– 474). Available at: http://www.intechopen.com/books/current-cancer-treatment-novel-beyond-conventional-approaches/targeted-therapies-in-hematological-malignancies
  164. Schaeublin, N. M., et al. (2011). Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale, 3(2), 410–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21229159. Accessed March 28, 2014.
  165. Seshacharyulu, P., et al. (2013). Targeting the EGFR signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 15–31.CrossRefGoogle Scholar
  166. Sharma, H., et al. (2015). Metal nanoparticles: A theranostic nanotool against cancer. Drug Discovery Today, 20(9), 1143–1151. doi:  10.1016/j.drudis.2015.05.009
  167. Sharma, A., Jain, N., & Sareen, R. (2013). Nanocarriers for diagnosis and targeting of breast cancer. BioMed Research International.Google Scholar
  168. Sheng, Z., Hu, D., & Xue, M. (2013). Indocyanine green nanoparticles for theranostic applications. Nano-Micro Letters, 5(3), 145–150.CrossRefGoogle Scholar
  169. Sherlock, S. P., et al. (2011). Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano, 5(2), 1505–1512.CrossRefGoogle Scholar
  170. Sitohy, B., Nagy, J. A., & Dvorak, H. F. (2012). Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer research, 72(8), 1909–1914. doi:  10.1158/0008-5472.CAN-11-3406
  171. Some, S., et al. (2014). Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Scientific Reports, 4, 6314. Available at: http://www.nature.com/srep/2014/140910/srep06314/full/srep06314.html
  172. Song, C. W. (1984). Effect of local hyperthermiaon blood flow and microenvironment: A review. Cancer Research, 44(OCTOBER), 4721–4730.Google Scholar
  173. Srinivasan, S., et al. (2013). Near-infrared fluorescing IR820-chitosan conjugate for multifunctional cancer theranostic applications. Journal of Photochemistry and Photobiology B: Biology, 119, 52–59. doi: 10.1016/j.jphotobiol.2012.12.008
  174. Strebhardt, K., & Ullrich, A. (2008). Paul Ehrlich’ s magic bullet concept: 100 years of progress. Nature Reviews Cancer, 8(june), 473–480.CrossRefGoogle Scholar
  175. Sviridov, A. P., et al. (2013). Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Applied Physics Letters, 103(19), 193110.CrossRefGoogle Scholar
  176. Tatli, S., et al. (2012. Radiofrequency ablation: Technique and clinical applications. Diagnostic and Interventional Radiology (Ankara, Turkey), 18(5), 508–16. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22407695
  177. Taylor, M. J., Tanna, S., & Sahota, T. (2010). In vivo study of a polymeric glucose-sensitive insulin delivery system using a rat model. Journal of Pharmaceutical Sciences, 99(10), 4215–4227.CrossRefGoogle Scholar
  178. Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24114523
  179. Thanou, M., & Gedroyc, W. (2013). MRI-guided focused ultrasound as a new method of drug delivery. Journal of Drug Delivery, 616197. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3666208&tool=pmcentrez&rendertype=abstract
  180. Tharkar, P., et al. (2014). Nanoparticulate carriers: An emerging tool for breast cancer therapy. Journal of Drug Targeting, 2330(January), 1–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25230853
  181. Tu, X., et al. (2014). PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. Journal of Materials Chemistry B, 2(15), 2184–2192. doi: 10.1039/C3TB21750G
  182. van der Zee, J. (2002). Heating the patient: A promising approach? Annals of Oncology, 13, 1173–1184.CrossRefGoogle Scholar
  183. van Horssen, R., Ten Hagen, T. L. M., & Eggermont, A. M. M. (2006). TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. The Oncologist, 11, 397–408.CrossRefGoogle Scholar
  184. Ventola, C. L. (2012). The nanomedicine revolution: part 2: Current and future clinical applications. P & T: A Peer-Reviewed Journal for Formulary Management, 37(10), 582–591. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3474440&tool=pmcentrez&rendertype=abstract
  185. Vivek, R., et al. (2014). Multifunctional HER2-Antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Applied Materials and Interfaces, 6(9), 6469–6480.CrossRefGoogle Scholar
  186. Wagner, V., et al. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.CrossRefGoogle Scholar
  187. Wang, A. Z., et al. (2008). Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 8(8), 1063–1070. Available at: http://www.tandfonline.com/doi/abs/10.1517/14712598.8.8.1063
  188. Wan, H., et al. (2014). Facile fabrication of a near-infrared responsive nanocarrier for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. Nanoscale, 6, 8743–8753. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24954159
  189. Wang, C., Cheng, L., & Liu, Z. (2013). Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics, 3(5), 317–330.CrossRefGoogle Scholar
  190. Wardman, P. (2007). Chemical radiosensitizers for use in radiotherapy. Clinical Oncology, 19, 397–417.CrossRefGoogle Scholar
  191. Weigelt, B., & Reis-Filho, J. S. (2009). Histological and molecular types of breast cancer: Is there a unifying taxonomy? Nature Reviews. Clinical Oncology, 6(12), 718–730. doi: 10.1038/nrclinonc.2009.166
  192. Williford, J.-M., et al. (2014). Recent advances in nanoparticle-mediated siRNA delivery. Annual Review of Biomedical Engineering, 16, 347–70. Available at: http://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-071813-105119
  193. Wu, D., et al. (2014). Peptide-based cancer therapy: Opportunity and challenge. Cancer Letters, 351(1), 13–22. doi: 10.1016/j.canlet.2014.05.002
  194. Wust, P., et al. (2002). Hyperthermia in combined treatment of cancer. The lancet Oncology, 3(8), 487–497.CrossRefGoogle Scholar
  195. Xia, C. Q., & Smith, P. G. (2012). Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Molecular Pharmacology, 82(6), 1008–21. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22826468
  196. Xiang, S.-H., et al. (2007). Monitoring temperature of a heating needle and surrounding blood during interventional whole body hyperthermia therapy. Measurement Science and Technology, 18(11), 3417–3424. Available at: http://stacks.iop.org/0957-0233/18/i=11/a=023?key=crossref.5ee3d766c2bc0559ecbd6be2a51345f1.
  197. Xiang, S. H., & Liu, J. (2008). Comprehensive evaluation on the heating capacities of four typical whole body hyperthermia strategies via compartmental model. International Journal of Heat and Mass Transfer, 51(23–24), 5486–5496.CrossRefGoogle Scholar
  198. Xing, M., et al. (2011). DsDNA-coated quantum dots. BioTechniques, 50(C), 259–261.Google Scholar
  199. Xu, L., et al. (2014). Conjugated polymers for photothermal therapy of cancer. Polymer Chemistry. Available at: http://xlink.rsc.org/?DOI=c3py01196h. Accessed January 24, 2014.
  200. Yamada, M., Foote, M., & Prow, T. W. (2015). Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7(3), 428–445.Google Scholar
  201. Yan, S., et al. (2010). Topoisomerase II alpha expression and the benefit of adjuvant chemotherapy for postoperative patients with non-small cell lung cancer. BMC cancer, 10, 621. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2988758&tool=pmcentrez&rendertype=abstract
  202. Yau, T., et al. (2015). Lectins with potential for anti-cancer therapy. Molecules (Basel, Switzerland), 20(3), 3791–810. Available at: http://www.mdpi.com/1420-3049/20/3/3791/htm
  203. Yen, S. K., et al. (2013). Design and synthesis of polymer-functionalized NIR fluorescent dyes—Magnetic nanoparticles for bioimaging. ACS Nano, 7(8), 6796–6805.CrossRefGoogle Scholar
  204. Yerushalmi, R., Hayes, M. M., & Gelmon, K. A. (2009). Breast carcinoma—Rare types: Review of the literature. Annals of Oncology, 20(11), 1763–1770.CrossRefGoogle Scholar
  205. Yewale, C., et al. (2013). Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 34(34), 8690–8707. doi: 10.1016/j.biomaterials.2013.07.100
  206. Yoo, M. I., et al. (2012). Synthesis and cellular uptake of scatteredly cyclic RGDfK-conjugated superparamagnetic iron oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 97, 175–181. doi: 10.1016/j.colsurfb.2012.04.009
  207. You, J., et al. (2012). Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. Journal of Controlled Release, 158(2), 319–328. doi: 10.1016/j.jconrel.2011.10.028
  208. Yousaf, M.Z., et al. (2013). Magnetic nanoparticle-based cancer nanodiagnostics. Chinese Physics B, 22(5), 058702. Available at: http://stacks.iop.org/1674-1056/22/i=5/a=058702?key=crossref.ecd587ccf0a5d91d1d623a34c5e24360
  209. Yu, M. K., Park, J., & Jon, S. (2012). Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2(1), 3–44.CrossRefGoogle Scholar
  210. Yuan, Y., et al. (2016). Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Delivery, 7544(April), 1–26. Available at: http://www.tandfonline.com/doi/full/10.1080/10717544.2016.1178825
  211. Zhang, X., Eden, H. S., & Chen, X. (2013). NIH Public Access. 159(1), 2–13.Google Scholar
  212. Zhang, H., Xia, H., & Zhao, Y. (2012). Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. Journal of Materials Chemistry, 22(3), 845. Available at: http://xlink.rsc.org/?DOI=c1jm14615g. Accessed March 28, 2014.
  213. Zhang, W., Zhang, Z., & Zhang, Y. (2011a). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters, 6(1), 555. Available at: http://www.nanoscalereslett.com/content/6/1/555
  214. Zhang, X. D., et al. (2011b). Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. International Journal of Nanomedicine, 6, 2071–2081.CrossRefGoogle Scholar
  215. Zhao, P., et al. (2014). Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials, 35(23), 6037–6046. doi: 10.1016/j.biomaterials.2014.04.019
  216. Zhao, Y., et al. (2016). Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer-associated fibroblast activation. Angewandte Chemie—International Edition, 55(3), 1050–1055.CrossRefGoogle Scholar
  217. Zheng, M., et al. (2013). Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 7(3), 2056–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23413798
  218. Zhou, F., et al. (2014a). Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of biomedical optics, 14(April 2009), 021009.Google Scholar
  219. Zhou, H., et al. (2014b). The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials, 35(5), 1597–1607. doi: 10.1016/j.biomaterials.2013.11.020

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Piyush Kumar
    • 1
  • Rohit Srivastava
    • 2
  1. 1.Indian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations