Skip to main content

Efficient Global Optimization with Indefinite Kernels

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

Kernel based surrogate models like Kriging are a popular remedy for costly objective function evaluations in optimization. Often, kernels are required to be definite. Highly customized kernels, or kernels for combinatorial representations, may be indefinite. This study investigates this issue in the context of Kriging. It is shown that approaches from the field of Support Vector Machines are useful starting points, but require further modifications to work with Kriging. This study compares a broad selection of methods for dealing with indefinite kernels in Kriging and Kriging-based Efficient Global Optimization, including spectrum transformation, feature embedding and computation of the nearest definite matrix. Model quality and optimization performance are tested. The standard, without explicitly correcting indefinite matrices, yields functional results, which are further improved by spectrum transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.W.: On the distribution of the two-sample Cramer-von Mises criterion. Ann. Math. Stat. 33(3), 1148–1159 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayhan, M.S., Chu, C.-H.H.: Towards indefinite gaussian processes. Technical report, University of Louisiana at Lafayette (2012)

    Google Scholar 

  3. Boisvert, J.B., Deutsch, C.V.: Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances. Comput. Geoscie. 37(4), 495–510 (2011)

    Article  Google Scholar 

  4. Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 145–152. ACM, New York (2009)

    Google Scholar 

  5. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  6. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix Anal. Appl. 11(4), 589–600 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Higham, N.J.: Computing the nearest correlation matrix-a problem from finance. IMA J. Numer. Anal. 22(3), 329–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  10. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Loosli, G., Canu, S., Ong, C.: Learning SVM in Krein spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1204–1216 (2015)

    Article  Google Scholar 

  13. Manchuk, J.G., Deutsch, C.V.: Robust solution of normal (kriging) equations. Technical report, CCG Alberta (2007)

    Google Scholar 

  14. Mangasarian, O.L.: Generalized support vector machines. In: Smola, A.J., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 135–146. MIT Press (2000)

    Google Scholar 

  15. Mockus, J., Tiesis, V., Zilinskas, A.: The application of bayesian methods for seeking the extremum. In: Towards Global Optimization 2, pp. 117–129. North-Holland, Amsterdam (1978)

    Google Scholar 

  16. Mohammadi, H., Le Riche, R., Durrande, N., Touboul, E., Bay, X.: An analytic comparison of regularization methods for Gaussian Processes. Research report, Ecole Nationale Supérieure des Mines de Saint-Etienne, LIMOS (2016)

    Google Scholar 

  17. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Moraglio, A., Kim, Y.-H., Yoon, Y.: Geometric surrogate-based optimisation for permutation-based problems. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2011, pp. 133–134. ACM, New York (2011)

    Google Scholar 

  19. Rebonato, R., Jäckel, P.: The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. J. Risk 2(2), 17–27 (1999)

    Article  Google Scholar 

  20. Schleif, F.-M., Tino, P.: Indefinite proximity learning: a review. Neural Comput. 27(10), 2039–2096 (2015)

    Article  Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  22. Schölkopf, B.: The kernel trick for distances. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 301–307. MIT Press, Cambridge (2001)

    Google Scholar 

  23. Wagner, T.: Planning and multi-objective optimization of manufacturing processes by means of empirical surrogate models. Ph. D. thesis, TU Dortmund. Vulkan Verlag (2013)

    Google Scholar 

  24. Wu, G., Chang, E.Y., Zhang, Z.: An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22nd International Conference on Machine Learning (2005)

    Google Scholar 

  25. Yandell, B.S.: Practical Data Analysis for Designed Experiments. Chapman and Hall/CRC, London (1997)

    Book  MATH  Google Scholar 

  26. Zaefferer, M., Stork, J., Bartz-Beielstein, T.: Distance measures for permutations in combinatorial efficient global optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 373–383. Springer, Heidelberg (2014)

    Google Scholar 

  27. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 871–878. ACM (2014)

    Google Scholar 

  28. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. Adv. Neural Inf. Process. Syst. 16(1), 49–56 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zaefferer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zaefferer, M., Bartz-Beielstein, T. (2016). Efficient Global Optimization with Indefinite Kernels. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics