Skip to main content

Data Classification Using Carbon-Nanotubes and Evolutionary Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

The potential of Evolution in Materio (EiM) for machine learning problems is explored here. This technique makes use of evolutionary algorithms (EAs) to influence the processing abilities of an un-configured physically rich medium, via exploitation of its physical properties. The EiM results reported are obtained using particle swarm optimisation (PSO) and differential evolution (DE) to exploit the complex voltage/current relationship of a mixture of single walled carbon nanotubes (SWCNTs) and liquid crystals (LCs). The computational problem considered is simple binary data classification. Results presented are consistent and reproducible. The evolutionary process based on EAs has the capacity to evolve the material to a state where data classification can be performed. Finally, it appears that through the use of smooth signal inputs, PSO produces classifiers out of the SWCNT/LC substrate which generalise better than those evolved with DE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, M., Hodgson, D., Gibbons, A.: Bacterial self-oranisation and computation. Int. J. Unconventional Comput. 3(3), 199–210 (2007)

    Google Scholar 

  2. Bird, J., Di Paolo, E.: Gordon pask and his maverick machines (Chap. 8). In: Husbands, P., Holland, O., Wheeler, M. (eds.) The Mechanical Mind in History, pp. 185–211. The MIT Press, Cambridge (2008)

    Chapter  Google Scholar 

  3. Bose, S., Lawrence, C., Liu, Z., Makarenko, K., van Damme, R., Broersma, H., van der Wiel, W.: Evolution of a designless nanoparticle network into reconfigurable boolean logic. Nat. Nanotechnol. (2015)

    Google Scholar 

  4. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro-Machine and Human Science, New York, NY, vol. 1, pp. 39–43 (1995)

    Google Scholar 

  5. Goudarzi, A., Lakin, M.R., Stefanovic, D.: Reservoir computing approach to robust computation using unreliable nanoscale networks. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 164–176. Springer, Heidelberg (2014)

    Google Scholar 

  6. Harding, S.L., Miller, J.F.: Evolution in materio: computing with liquid crystal. Int. J. Unconventional Comput. 3(4), 243–257 (2007)

    Google Scholar 

  7. Jones, J., Whiting, J.G., Adamatzky, A.: Quantitative transformation for implementation of adder circuits in physical systems. Biosystems 134, 16–23 (2015)

    Article  Google Scholar 

  8. Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D., Pearson, C., Petty, M.C.: Logic gate and circuit training on randomly dispersed carbon nanotubes. Int. J. Unconventional Comput. 10(5–6), 473–497 (2014)

    Google Scholar 

  9. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for integer programming. In: WCCI, pp. 1582–1587. IEEE (2002)

    Google Scholar 

  10. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  11. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D., Bowen, L., Petty, M.C.: Computing with carbon nanotubes: optimization of threshold logic gates using disordered nanotube/polymer composites. J. Appl. Phys. 117(13), 134903 (2015)

    Article  Google Scholar 

  12. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, pp. 167–176. IEEE (2002)

    Google Scholar 

  13. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materials. Evol. Intel. 7(1), 49–67 (2014)

    Article  Google Scholar 

  14. Miller, J.F., Mohid, M.: Function optimization using cartesian genetic programming. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 147–148. ACM (2013)

    Google Scholar 

  15. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebø, O.R., Massey, M.K., Petty, M.C.: Evolution-in-materio: solving machine learning classification problems using materials. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 721–730. Springer, Heidelberg (2014)

    Google Scholar 

  16. NASCENCE project (ICT 317662). Report on suitable computational tasks of various difficulties. Deliverable D4.2 (2013)

    Google Scholar 

  17. Pedersen, M.E.H.: Good parameters for differential evolution. Technical report, Hvass Computer Science Laboratories (2010)

    Google Scholar 

  18. Prasad, S., Yang, M., Zhang, X., Ozkan, C.S., Ozkan, M.: Electric field assisted patterning of neuronal networks for the study of brain functions. Biomed. Microdevices 5(2), 125–137 (2003)

    Article  Google Scholar 

  19. Stepney, S.: The neglected pillar of material computation. Physica D 237(9), 1157–1164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi, T., Iwata, M., Liu, W. (eds.) ICES 1996. LNCS, pp. 390–405. Springer, Heidelberg (1996)

    Google Scholar 

  22. Volpati, D., Massey, M.K., Johnson, D., Kotsialos, A., Qaiser, F., Pearson, C., Coleman, K., Tiburzi, G., Zeze, D.A., Petty, M.C.: Exploring the alignment of carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes. J. Appl. Phys. 117(12), 125303 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Vissol-Gaudin or A. Kotsialos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Vissol-Gaudin, E. et al. (2016). Data Classification Using Carbon-Nanotubes and Evolutionary Algorithms. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics