Skip to main content

Evolving Cryptographic Pseudorandom Number Generators

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9921)

Abstract

Random number generators (RNGs) play an important role in many real-world applications. Besides true hardware RNGs, one important class are deterministic random number generators. Such generators do not possess the unpredictability of true RNGs, but still have a widespread usage. For a deterministic RNG to be used in cryptography, it needs to fulfill a number of conditions related to the speed, the security, and the ease of implementation. In this paper, we investigate how to evolve deterministic RNGs with Cartesian Genetic Programming. Our results show that such evolved generators easily pass all randomness tests and are extremely fast/small in hardware.

Keywords

  • Random number generators
  • Pseudorandomness
  • Cryptography
  • Cartesian Genetic Programming
  • Statistical tests

This work has been supported in part by Croatian Science Foundation under the project IP-2014-09-4882. In addition, this work was supported in part by the Research Council KU Leuven (C16/15/058) and IOF project EDA-DSE (HB/13/020).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-45823-6_57
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-45823-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. Chapman and Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  2. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo random number generator. SIAM J. Comput. 15(2), 364–383 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Danger, J.L., Guilley, S., Barthe, L., Benoit, P.: Countermeasures against physical attacks in FPGAs. In: Badrignans, B., Danger, L.J., Fischer, V., Gogniat, G., Torres, L. (eds.) Security Trends for FPGAS: From Secured to Secure Reconfigurable Systems, pp. 73–100. Springer, Dordrecht (2011)

    CrossRef  Google Scholar 

  4. Lamenca-Martinez, C., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: Lamar: a new pseudorandom number generator evolved by means of genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 850–859. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: LAMED - a PRNG for EPC class-1 generation-2 RFID specification. Comput. Stand. Interfaces 31(1), 88–97 (2009)

    CrossRef  Google Scholar 

  6. Killmann, W., Schindler, W.: A proposal for: functionality classes for random number generators. Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany (2011)

    Google Scholar 

  7. Bassham, III, Lawrence, E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A., Dray, J.F., Vo, S.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, SP 800-22 Rev. 1a. National Institute of Standards & Technology, Gaithersburg, MD, USA (2010)

    Google Scholar 

  8. Marsaglia, G.: The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness (1995). http://www.stat.fsu.edu/pub/diehard/

  9. Koza, J.R.: Evolving a computer program to generate random numbers using the genetic programming paradigm. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 37–44. Morgan Kaufmann (1991)

    Google Scholar 

  10. Hernandez, J., Seznec, A., Isasi, P.: On the design of state-of-the-art pseudorandom number generators by means of genetic programming. In: Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 1510–1516, June 2004

    Google Scholar 

  11. Warren, H.S.: Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

    Google Scholar 

  12. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  13. Tian, X., Benkrid, K.: Mersenne twister random number generation on FPGA, CPU and GPU. In: NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2009, pp. 460–464, July 2009

    Google Scholar 

  14. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

    CrossRef  Google Scholar 

  15. Sekanina, L.: Virtual reconfigurable circuits for real-world applications of evolvable hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 186–197. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stjepan Picek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Picek, S., Sisejkovic, D., Rozic, V., Yang, B., Jakobovic, D., Mentens, N. (2016). Evolving Cryptographic Pseudorandom Number Generators. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)