Skip to main content

Plasmon Particle Array Lasers

  • Chapter
  • First Online:
Quantum Plasmonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 185))

  • 2936 Accesses

Abstract

Diffractive arrays of strongly scattering noble metal particles coupled to a high-index slab of gain material can form the basis for plasmonic distributed feedback lasers. In this chapter, we discuss recent theoretical and experimental results describing the electromagnetic properties of these structures. Particularly, we investigate bandgap topology versus detuning between the plasmonic and Bragg resonances. We examine the complex dispersion relation, accounting for the fact that the particles are electrodynamic scatterers with radiation loss, that couple via a stratified medium system supporting guided modes. From the complex dispersion of this array we can deduce loss and outcoupling properties of the various Bloch modes, giving a handle on its lasing properties. From the experimental side, we show how to measure the dispersion relation using fluorescence microscopy, and systematically examine the array dispersion for realized plasmonic lasers as function of detuning between particle and lattice resonance. We conclude the chapter with a vision towards employing disordered, quasiperiodic and random plasmonic arrays to induce different optical responses, and experimentally demonstrate the exceptional robustness of lasing to disorder in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.E. Siegman, Lasers (University Science Books, 1986)

    Google Scholar 

  2. G.A. Turnbull, P. Andrew, M.J. Jory, W.L. Barnes, I.D.W. Samuel, Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001)

    Article  ADS  Google Scholar 

  3. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  4. I.D.W. Samuel, G.A. Turnbull, Organic semiconductor lasers. Chem. Rev. 107, 1272 (2007)

    Article  Google Scholar 

  5. G. Heliotis, R. Xia, G.A. Turnbull, P. Andrews, I.D.W. Barnes, D.D.C. Bradley, Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14, 91–97 (2004)

    Article  Google Scholar 

  6. P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, D. Pisignano, Near-infrared imprinted distributed feedback lasers. Appl. Phys. Lett. 89, 201105 (2006)

    Article  ADS  Google Scholar 

  7. E. Mele, A. Camposeo, R. Stabile, P. Del Carro, F. Di Benedetto, L. Persano, R. Cingolani, D. Pisignano, Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Appl. Phys. Lett. 89, 131109 (2006)

    Article  ADS  Google Scholar 

  8. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  9. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Cirac, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8, 835 (2014)

    Article  ADS  Google Scholar 

  10. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, A. Maitre, Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett. 13, 1516 (2013)

    Article  ADS  Google Scholar 

  11. E.J.R. Vesseur, J.F. Garcia de Abajo, A. Polman, Broadband purcell enhancement in plasmonic ring cavities. Phys. Rev. B 82, 165419 (2010)

    Article  ADS  Google Scholar 

  12. D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)

    Article  ADS  Google Scholar 

  13. M.T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P.J. Van Veldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. De Waardt, E.J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, M.K. Smit, Lasing in metallic-coated nanocavities. Nat. Photonics 1, 589 (2007)

    Article  ADS  Google Scholar 

  14. M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. van Veldhoven, E.J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, M.K. Smit, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107 (2009)

    Article  ADS  Google Scholar 

  15. M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482, 204 (2012)

    Article  ADS  Google Scholar 

  16. P. Berini, I. De Leon, Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 6, 16 (2012)

    Article  ADS  Google Scholar 

  17. S. Murai, M.A. Verschuuren, G. Lozano, G. Pirruccio, S.R.K. Rodriguez, J.G. Rivas, Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides. Opt. Express 21, 4250 (2013)

    Article  ADS  Google Scholar 

  18. G. Vecchi, V. Giannini, J.G. Rivas, Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009)

    Article  ADS  Google Scholar 

  19. A.G. Nikitin, A.V. Kabashin, H. Dallaporta, Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt. Express 20, 27941 (2012)

    Article  ADS  Google Scholar 

  20. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.R. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601 (2008)

    Article  Google Scholar 

  21. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494 (2008)

    Article  Google Scholar 

  22. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  23. G. Lozano, D.J. Louwers, S.R.K. Rodriguez, S. Murai, O.T.A. Jansen, M.A. Verschuuren, J.G. Rivas, Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2, e66 (2013)

    Google Scholar 

  24. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotech. 8, 506–511 (2013)

    Article  ADS  Google Scholar 

  25. A.H. Schokker, A.F. Koenderink, Lasing at the band edges of plasmonic lattices. Phys. Rev. B 90(155452), 1–10 (2014)

    Google Scholar 

  26. A. Yang, T.B. Hoang, M. Dridi, C. Deeb, M.H. Mikkelsen, G.C. Schatz, T.W. Odom, Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  27. K.W.-K. Shung, Y.C. Tsai, Surface effects and band measurements in photonic crystals. Phys. Rev. B 48, 11265

    Google Scholar 

  28. H. Kogelnik, C. Shank, Stimulated emission in a periodic structure. Appl. Phys. Lett. 18, 152 (1971)

    Article  ADS  Google Scholar 

  29. I. Sersic, C. Tuambilangana, A.F. Koenderink, Fourier microscopy of single plasmonic scatterers. New J. Phys. 13(083019), 1–14 (2011)

    Google Scholar 

  30. Y. Fontana, G. Grzela, E.P.A.M. Bakkers, G.J. Rivas, Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy. Phys. Rev. B 86, 245303 (2012)

    Article  ADS  Google Scholar 

  31. J.A. Kurvits, M. Jiang, R. Zia, Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015)

    Google Scholar 

  32. T.H. Taminiau, S. Karaveli, N.F. van Hulst, R. Zia, Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012)

    Article  ADS  Google Scholar 

  33. J.Y. Suh, C.H. Kim, W. Zhou, M.D. Huntington, D.T. Co, M.R. Wasielewski, T.W. Odom, Plasmonic bowtie nanolaser arrays. Nano Lett. 12, 5769–5774 (2012)

    Google Scholar 

  34. S.R.K. Rodriguez, S. Murai, M.A. Verschuuren, G.J. Rivas, Light-emitting waveguide plasmon polaritons. Phys. Rev. Lett. 109, 166803 (2012)

    Article  ADS  Google Scholar 

  35. F.J. García de Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267 (2007)

    Article  ADS  Google Scholar 

  36. M. Agio, A. Alù, Optical Antennas (Cambridge University Press, 2013)

    Google Scholar 

  37. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006)

    Google Scholar 

  38. Y. Hadad, B. Z. Steinberg, Electrodynamic synergy of micro-properties and macro-structure in particle arrays, 2010 URSI international symposium on electromagnetic theory. Berlin, Germany (2010)

    Google Scholar 

  39. M.J. Weber, Handbook of Optical Constants of Materials (CRC Press, 2003)

    Google Scholar 

  40. A.H. Schokker, A.F. Koenderink, Statistics of randomized plasmonic lattice lasers. ACS Photonics 2, 1289–1297 (2015)

    Article  Google Scholar 

  41. K. Guo, M.A. Verschuuren, A.F. Koenderink, Superresolution imaging of local density of states in plasmon lattices. Optica (2016)

    Google Scholar 

  42. G. Pirruccio, M. Ramezani, S.R.K. Rodriguez, Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Phys. Rev. Lett. (2016)

    Google Scholar 

  43. M.G. Conley, M. Burresi, F. Pratesi, K. Vynck, D.S. Wiersma, Light transport and localization in two-dimensional correlated disorder. Phys. Rev. Lett. 112, 143901 (2014)

    Article  ADS  Google Scholar 

  44. N. Bachelard, J. Andreasen, S. Gigan, P. Sebbah, Taming random lasers through active spatial control of the pump. Phys. Rev. Lett. 109, 033903 (2012)

    Google Scholar 

  45. H. Noh, J.K.-K. Yang, S.V. Boriskina, M.J. Rooks, G.S. Solomon, L. Dal Negro, H. Cao, Lasing in Thue-Morse structures with optimized aperiodicity. Appl. Phys. Lett. 98, 201109 (2011)

    Google Scholar 

  46. L. Dal Negro, S.V. Boriskina, Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2011)

    Article  Google Scholar 

  47. Dainty, J. C., editor: Laser Speckle and Related Phenomena. Topics in Applied Physics. Springer (1975)

    Google Scholar 

  48. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, A. Sentenac, Structured illumination microscopy using unknown speckle patterns. Nat. Photonics 5, 312–315 (2012)

    Article  ADS  Google Scholar 

  49. H. Yilmaz, E.G. van Putten, J. Bertolotti, A. Lagendijk, W.L. Vos, A.P. Mosk, Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 5, 424–429 (2015)

    Article  Google Scholar 

  50. F. Capolino, D.R. Wilton, W.A. Johnson, Efficient computation of the 2-D green’s function for 1-D periodic structures using the Ewald method. IEEE Trans. Ant. Prop. 53(9), 2977–2984 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  51. K.E. Jordan, G.R. Richter, P. Sheng, An efficient numerical evaluation of the green’s function for the Helmholtz operator on periodic structure. J. Comput. Phys. 63, 222–235 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Steshenko, F. Capolino, P. Alitalo, S. Tretyakov, Effective model and investigation of the near field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres. Phys. Rev. E 84, 016607 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Royal Dutch Academy of Sciences (KNAW), the U.S. Air Force Office of Scientific Research and the Welch Foundation with grant No. F-1802.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Hadad or A. F. Koenderink .

Editor information

Editors and Affiliations

Appendices

Appendix A: 1D Green’s Function

First we define the normalized longitudinal wavenumbers \(\zeta_{i}^{X} = \sqrt {\epsilon_{ri} - \xi_{X}^{2} }\) , with \(X = TE/TM\) and subject to the radiation condition \({\text{Im}}\left\{ {\zeta_{i}^{X} } \right\}\, \ge \,0\). Then, the 1D Green’s function used in (8.8) is given by

$$g(\omega ,\,z,\,z^{{\prime }} )\, = \,\frac{1}{2}\frac{{Z_{2}^{X} }}{{D_{X} }}\left( {e^{{ik_{z}^{X} |z - z^{{\prime }} |}} \, + \,R_{1}^{X} e^{{ik_{z}^{X} (2h - (z + z^{{\prime }} ))}} \, + \,R_{3}^{X} e^{{ik_{z}^{X} (z + z^{{\prime }} )}} \, + \,R_{1}^{X} R_{3}^{X} e^{{ik_{z}^{X} (2h - |z - z^{{\prime }} |)}} } \right)$$
(8.9)

where h is the SU8 layer thickness and \(k_{z}^{X} \, = \,k_{0} \zeta_{2}^{X}\), and

$$R_{i}^{X} \, = \,\frac{{Z_{i}^{X} - Z_{2}^{X} }}{{Z_{i}^{X} + Z_{2}^{X} }},\;\;\;{\kern 1pt} i = 1,\,3$$
(8.10)
$$Z_{i}^{TM} = \eta_{0} \frac{{\zeta_{1}^{TM} }}{{\epsilon_{ri} }},\quad Z_{i}^{TE} = \frac{{\eta_{0}}}{{\zeta_{i}^{TE}}}\quad i = 1,2,3$$
(8.11)

and

$$\left. {D_{X} \, = \,\frac{d}{d\xi }(1\, - \,R_{1}^{X} R_{3}^{X} e^{{2ik_{0} \zeta_{2}^{X} h}} )} \right|_{{\xi_{X} = k_{X} /k_{0} }}$$
(8.12)

Appendix B: Ewald Summation

The convergence of the infinite summation in (8.5) can be significantly accelerated by using the Ewald summation technique [5052]. First, we write

$$C(\omega ,\,k_{x} ,\,k_{y} )\, = \,2A_{TE} \left( {S(k_{TE} )\, + \,\frac{{S_{xx} (k_{TE} )}}{{k_{TE}^{2} }}} \right)\, - \,2A_{TM} \frac{{S_{xx} (k_{TM} )}}{{k_{TM}^{2} }}$$
(8.13)

with \(k_{TE} \, = \,k_{0} \xi_{TE}\), and \(k_{TM} \, = \,k_{0} \xi_{TM}\), and

$$S(k)\, = \,\mathop {\lim }\limits_{{x^{{\prime }} y^{{\prime }} \to 0}} \mathop{\sum}\nolimits^{{\prime }} H_{0}^{(1)} (kR_{mn} )e^{{id(mk_{x} + n_{k} y)}} ,$$
(8.14)
$$S_{xx} (k) = \partial_{{x^{{\prime }} x^{{\prime }} }} S(k)$$
(8.15)

Where \(R_{mn} = \sqrt {(x^{{\prime }} - md)^{2} + (y^{{\prime }} - nd)^{2} }\). The primed summation sign in (8.14) is used to exclude the \((m,\,n)\, = \,(0,\,0)\) term from the infinite two dimensional summation. The summation can also be written as

$$S(k)\, = \,\mathop {\lim }\limits_{{x^{\prime}y^{\prime} \to 0}} \sum {H_{0}^{(1)} } (kR_{mn} )e^{{id(mk_{x} + n_{k} y)}} \, - \,H_{0}^{(1)} (k\rho^{{\prime }} ),$$
(8.16)

where \(\rho^{{\prime }} = \sqrt {x^{{{\prime }2}} + y^{{{\prime }2}} }\). The unprimed summation is used for infinite summation \((m,\,n)\, \in \,( - \infty ,\,\infty )\, \times \,( - \infty ,\,\infty )\). Next we replace the Hankel function by one of its integral representations

$$H_{0}^{(1)} (kR_{mn} ) = - \frac{2i}{\pi }\int_{0}^{\infty } {\frac{du}{u}} e^{{\left( {k^{2} /4u^{2} - R_{mn}^{2} u^{2} } \right)}}$$
(8.17)

Note that since \(R_{mn}^{2} \, > \,0\), and assuming that \(k^{2} \, > \,0\), to formally guarantee convergence of the integral representation in (8.17), we have to require that u goes to infinity along the line \(argu\, = \, - \pi /4\). However, once we use this representation and derive an alternative, rapidly converging representation for the summation, we may apply Cauchy theorem and calculate the required integrals along a more convenient path. The semi-infinite integration path above is decomposed into two intervals, \(0\, \to \,E\), and \(E\, \to \,\infty\), where E is an arbitrarily chosen constant picked as a trade-off between fast convergence of \(S_{1}\) and \(S_{2}\). We define

$$S_{1} \, = \,\sum - \frac{2i}{\pi }\int\limits_{0}^{E} {\frac{du}{u}} e^{{\left( {k^{2} /4u^{2} - R_{mn}^{2} u^{2} } \right)}} e^{{id(mk_{x} + nk_{y} )}}$$
(8.18)
$$S_{2} \, = \,\mathop{\sum}\nolimits^{{\prime }} \frac{2i}{\pi }\int\limits_{E}^{\infty } {\frac{du}{u}} e^{{\left( {k^{2} /4u^{2} - R_{mn}^{2} u^{2} } \right)}} e^{{id(mk_{x} + nk_{y} )}}$$
(8.19)
$$C\, = \,\frac{2i}{\pi }\int\limits_{0}^{E} {\frac{du}{u}} e^{{\left( {k^{2} /4u^{2} - \rho^{{{\prime }2}} u^{2} } \right)}}$$
(8.20)

such that \(S = S_{1} + S_{2} + C\). Note that as long as \(E\, \gg \,k/2\), the integration in the summands of \(S_{2}\) yields a Gaussian decay of the summands with respect to the summation indexes hence the summation over this part of the integral convergence rapidly. Similarly, the integration required to calculate C converges rapidly. The only issue left is the slow convergence of \(S_{1}\) which is similar to the poor convergence of the original series. In this case, however, we are able to apply Poisson summation to accelerate the convergence. We obtain

$$S_{1} \, = \,\frac{4i}{{d^{2} }}\sum\limits_{p,q} {\frac{{e^{{k_{zpq}^{2} /4E^{2} }} }}{{k_{zpq}^{2} }}}$$
(8.21)

where \({\mathbf{k}}_{\rho pq} \, = \,(k_{x} ,\,k_{y} ) - 2\pi /d(p,\,q)\), and \(k_{zpq}^{2} \, = \,k^{2} - {\mathbf{k}}_{\rho pq} \cdot {\mathbf{k}}_{\rho pq}\), \(p,\,q\, \in \,( - \infty ,\,\infty )\, \times \,( - \infty ,\,\infty )\). The convergence of the summation \(S_{1}\) in its new representation is Gaussian, therefore, practically only a few terms are required.

Finally, we have \(S_{xx} = S_{1xx} + S_{2xx} + C_{xx}\) where

$$S_{1xx} = - \frac{4i}{{d^{2} }}\sum\limits_{p,q} {\frac{{e^{{k_{zpq}^{2} /4E^{2} }} }}{{k_{zpq}^{2} }}} \left( {k_{x} - \frac{2\pi }{d}p} \right)^{2}$$
(8.22)
$$S_{2xx} \, = \,\mathop{\sum}\nolimits^{{\prime }} \frac{4i}{\pi }\int\limits_{E}^{\infty } {du(1\, - \,2m^{2} d^{2} u^{2} )u\, \times \,e^{{\left( {k^{2} /4u^{2} - R_{mn}^{2} u^{2} } \right)}} e^{{id(mk_{x} + nk_{y} )}} }$$
(8.23)
$$C_{xx} = - \frac{4i}{\pi }\int_{0}^{E} d uue^{{\left( {k^{2} /4u^{2} - \rho^{{{\prime }2}} u^{2} } \right)}}$$
(8.24)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hadad, Y., Schokker, A.H., van Riggelen, F., Alù, A., Koenderink, A.F. (2017). Plasmon Particle Array Lasers. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_8

Download citation

Publish with us

Policies and ethics