Skip to main content

Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers

  • Chapter
  • First Online:
Book cover Quantum Plasmonics

Abstract

Hyperbolic metamaterials are anisotropic media that behave as metals or as dielectrics depending on light polarization. These plasmonic materials constitute a versatile platform for promoting both spontaneous and stimulated emission for a broad range of emitter wavelengths. We analyze experimental realizations of a single–photon source and of a plasmonic laser based on two different architectures of hyperbolic metamaterials. At the heart of this material capability lies the high broadband photonic density of states originating from a rich structure of confined plasmonic modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.C. Clemmow, The theory of electromagnetic waves in a simple anisotropic medium. Proc. Inst. Electr. Eng. 110(1), 101 (1963)

    Article  Google Scholar 

  2. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106(5), 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.M. Rytov, Electromagnetic properties of a finely stratified medium. Sov. Phys. JETP 2(10) (1956)

    Google Scholar 

  4. D. Smith, D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90(7), 077405 (2003)

    Article  ADS  Google Scholar 

  5. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14(18), 8247–8256 (2006)

    Article  ADS  Google Scholar 

  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686 (2007)

    Article  ADS  Google Scholar 

  7. S. Ishii, A.V. Kildishev, E. Narimanov, V.M. Shalaev, V.P. Drachev, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photon. Rev. 7(2), 265–271 (2013)

    Article  Google Scholar 

  8. Z. Jacob, J.-Y. Kim, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Engineering photonic density of states using metamaterials. Appl. Phys. B 100(1), 215–218 (2010)

    Article  ADS  Google Scholar 

  9. A.D. Neira, N. Olivier, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V Zayats, Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015)

    Google Scholar 

  10. S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109(10), 104301 (2012)

    Article  ADS  Google Scholar 

  11. C. Shen, Y. Xie, N. Sui, W. Wang, S.A. Cummer, Y. Jing, Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115(25), 1–5 (2015)

    Article  Google Scholar 

  12. E.E. Narimanov, A.V. Kildishev, Naturally hyperbolic. Nat. Photonics 9, 214–216 (2015)

    Article  ADS  Google Scholar 

  13. R. Chandrasekar, Z. Wang, X. Meng, M.Y. Shalaginov, A. Lagutchev, Y.L. Kim, A. Wei, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Lasing action with gold nanorod hyperbolic metamaterials. arXiv:1609.05168 (2016)

  14. G.V Naik, B. Saha, J. Liu, S.M. Saber, E.A. Stach, J.M.K. Irudayaraj, T.D. Sands, V.M. Shalaev, A. Boltasseva, Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl. Acad. Sci. 111(21), 7546–7551 (2014)

    Google Scholar 

  15. J. Elser, R. Wangberg, V.A. Podolskiy, E.E. Narimanov, Nanowire metamaterials with extreme optical anisotropy. Appl. Phys. Lett. 89(26), 261102 (2006)

    Article  ADS  Google Scholar 

  16. B.M. Wells, A.V. Zayats, V.A. Podolskiy, Nonlocal optics of plasmonic nanowire metamaterials. Phys. Rev. B 89(3), 35111 (2014)

    Article  ADS  Google Scholar 

  17. A.V. Chebykin, A.A. Orlov, A.V. Vozianova, S.I. Maslovski, Y.S. Kivshar, P.A. Belov, Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys. Rev. B 84(11), 115438 (2011)

    Article  ADS  Google Scholar 

  18. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011)

    Article  ADS  Google Scholar 

  19. R.-M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 7(1), 1–21 (2013)

    Article  Google Scholar 

  20. C. Monroe, Quantum information processing with atoms and photons. Nature 416(6877), 238–246 (2002)

    Article  ADS  Google Scholar 

  21. D. DiVincenzo, Quantum computation. Science 270(5234), 255–261 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. N. Gisin, G. Ribordy, H. Zbinden, Quantum cryptography. arXiv Prepr. quant-ph/0101098 (2001)

    Google Scholar 

  23. L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  ADS  Google Scholar 

  24. D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. 575–579 (1997)

    Google Scholar 

  25. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321), 2012–2014 (1997)

    Article  Google Scholar 

  26. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290–293 (2000)

    Article  ADS  Google Scholar 

  27. P. Tamarat, T. Gaebel, J.R. Rabeau, M. Khan, A.D. Greentree, H. Wilson, L.C.L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, J. Wrachtrup, Stark shift control of single optical centers in diamond 083002, 1–4 (2006)

    Google Scholar 

  28. G. Fuchs, V. Dobrovitski, R. Hanson, A. Batra, C. Weis, T. Schenkel, D. Awschalom, Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101(11), 117601 (2008)

    Google Scholar 

  29. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69 (1946)

    Google Scholar 

  30. S. Schietinger, O. Benson, Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator. J. Phys. B: At. Mol. Opt. Phys. 42(11), 114001 (2009)

    Article  ADS  Google Scholar 

  31. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7(1), 69–74 (2012)

    Article  ADS  Google Scholar 

  32. A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109(3), 033604 (2012)

    Article  ADS  Google Scholar 

  33. M.Y. Shalaginov, V.V. Vorobyov, J. Liu, M. Ferrera, A.V. Akimov, A. Lagutchev, A.N. Smolyaninov, V.V. Klimov, J. Irudayaraj, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser Photon. Rev. 9(1), 120–127 (2015)

    Google Scholar 

  34. M.Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A.V. Kildishev, V.M. Shalaev, Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl. Phys. Lett. 102(17), 173114 (2013)

    Article  ADS  Google Scholar 

  35. D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9(1), 48–53 (2014)

    Article  ADS  Google Scholar 

  36. H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336(6078), 205–209 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Galfsky, H.N.S. Krishnamoorthy, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica 2(1), 62 (2015)

    Article  Google Scholar 

  38. G.V. Naik, J.L. Schroeder, X. Ni, V. Alexander, T.D. Sands, A. Boltasseva, Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2(4), 534–537 (2012)

    Article  Google Scholar 

  39. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100(18), 181105 (2012)

    Article  ADS  Google Scholar 

  40. M.S. Yeung, T.K. Gustafson, Spontaneous emission near an absorbing dielectric surface. Phys. Rev. A 54(6), 5227–5242 (1996)

    Article  ADS  Google Scholar 

  41. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  42. W.C. Chew, S. Chen, Response of a point source embedded in a layered medium. IEEE Antennas Wirel. Propag. Lett. 2(1), 254–258 (2003)

    Article  ADS  Google Scholar 

  43. K. Visscher, G.J. Brakenhoff, T.D. Visser, J. Microsc. 175(2), 162–165 (1994)

    Google Scholar 

  44. S.V. Zhukovsky, O. Kidwai, J.E. Sipe, Opt. Express 21(12), 14982–14987 (2013)

    Google Scholar 

  45. M.P. van Exter, G. Nienhuis, J.P. Woerdman, Two simple expressions for the spontaneous emission factor β. Phys. Rev. A 54(4), 3553–3558 (1996)

    Article  ADS  Google Scholar 

  46. M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. van Veldhoven, E.J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, M.K. Smit, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17(13), 11107 (2009)

    Article  ADS  Google Scholar 

  47. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C.M. Lieber, H.-G. Park, Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett. 10(9), 3679–3683 (2010)

    Article  ADS  Google Scholar 

  48. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–1112 (2009)

    Google Scholar 

  49. X. Meng, A.V. Kildishev, K. Fujita, K. Tanaka, V.M. Shalaev, Wavelength-tunable spasing in the visible. Nano Lett. 13(9), 4106–4112 (2013)

    Article  ADS  Google Scholar 

  50. W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, T.W. Odom, Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013)

    Google Scholar 

  51. F. van Beijnum, P.J. van Veldhoven, E.J. Geluk, M.J.A. de Dood, G.W. ’t Hooft, M.P. van Exter, Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110(20), 206802 (2013)

    Article  ADS  Google Scholar 

  52. X. Meng, J. Liu, A.V. Kildishev, V.M. Shalaev, Highly directional spaser array for the red wavelength region. Laser Photonics Rev. 8(6), 896–903 (2014)

    Article  Google Scholar 

  53. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461(7264), 629–632 (2009)

    Article  ADS  Google Scholar 

  54. J.K. Kitur, L. Gu, T. Tumkur, C. Bonner, M.A. Noginov, Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion. ACS Photonics 2(8), 1019–1024 (2015)

    Article  Google Scholar 

  55. J.-M. Moon, A. Wei, Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. J. Phys. Chem. B 109(49), 23336–23341 (2005)

    Article  Google Scholar 

  56. R. Starko-Bowes, J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, Z. Jacob, Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials. J. Opt. Soc. Am. B 32(10), 2074 (2015)

    Article  ADS  Google Scholar 

  57. M.Y. Shalaginov, S. Bogdanov, V.V Vorobyov, A.S. Lagutchev, A.V. Kildishev, A.V. Akimov, A. Boltasseva, V.M. Shalaev, Chapter 6: Enhancement of single-photon sources with metamaterials. In: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, ed. by S.A. Malinovskaya and I. Novikova, World Scientific, 123–148 (2015)

    Google Scholar 

  58. L.F. Shampine, Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. 211(2), 131–140 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. M. Frimmer, A. Mohtashami, A.Femius Koenderink, Nanomechanical method to gauge emission quantum yield applied to nitrogen-vacancy centers in nanodiamond. Appl. Phys. Lett. 102(12), 121105 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by AFOSR-MURI grant (FA9550-10-1-0264), NSF-MRSEC grant (DMR-1120923), and ONR grant (N00014-13-1-0649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Shalaginov .

Editor information

Editors and Affiliations

Appendix: Semi-analytical Calculations of the Purcell Factor and Normalized Collected Emission Power

Appendix: Semi-analytical Calculations of the Purcell Factor and Normalized Collected Emission Power

High LDOS provided by the HMM can lead to dramatic changes in fluorescence lifetimes of quantum emitters. In practice, one is also interested in the percentage of the dissipated optical power that can be collected by a far field detector. In order to describe effects of a realistic HMM on a single-dipole emitter placed in the vicinity of a planar HMM, we performed calculations of total power flow in the immediate vicinity of the emitter as well as through a far-field collection plane. A single emitter was modeled as an oscillating electric dipole with dipole moment p and angular frequency ω. The energy dissipation rate in an inhomogeneous environment is given by [41]

$$P = \frac{\omega }{2}\text{Im} \left[ {{\mathbf{p}}^{ * } \cdot \left( {{\mathbf{E}}_{0} ({\mathbf{r}}_{0} ) + {\mathbf{E}}_{\text{s}} ({\mathbf{r}}_{0} )} \right)} \right]$$
(A.1)

where E 0(r 0) and E s(r 0) are the primary dipole field and scattered field at the dipole position (r0), respectively. These electric fields were calculated using the dyadic Green’s function formalism [41]. We analyzed the contribution of each spatial frequency mode using an angular spectrum representation of the Green’s functions. The Purcell factors F P for in-plane (||) and perpendicular (⊥) oriented single-dipole emitters placed at a distance h above a multilayer planar structure were calculated using the following formulae [41]

$$F_{P}^{ \bot } = 1 + \frac{3}{2}\frac{1}{{\varepsilon_{\sup }^{3/2} }}\int_{0}^{\infty } {\text{Re} \left\{ {\frac{{s^{3} }}{{s_{ \bot ,\sup } (s)}}\tilde{r}^{\text{p}} (s)e^{{2ik_{0} s_{ \bot ,\sup } (s)h}} } \right\}} ds$$
(A.2)
$$F_{P}^{\parallel } = 1 + \frac{3}{4}\frac{1}{{\varepsilon_{\sup }^{1/2} }}\int_{0}^{\infty } {\text{Re} \left\{ {\frac{s}{{s_{ \bot ,\sup } (s)}}\left[ {\tilde{r}^{\text{s}} (s) - \frac{{s_{ \bot ,\sup }^{2} (s)}}{{\varepsilon_{\sup }^{{}} }}\tilde{r}^{p} (s)} \right]e^{{2ik_{0} s_{ \bot ,\sup } (s)h}} } \right\}} ds$$
(A.3)

The value of F P for the isotropic (ave), statistically averaged dipole orientation is given by

$$F_{P}^{ave} = \frac{2}{3}F_{P}^{\parallel } + \frac{1}{3}F_{P}^{ \bot }$$
(A.4)

Normalized collected emission powers f rad for the same dipole orientations are shown below

$$f_{rad}^{ \bot } = \frac{3}{4}\int\limits_{0}^{{\theta_{\hbox{max} } }} {\sin^{3} \theta \left| {e^{{ - i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} + \tilde{r}^{\text{p}} (\theta )e^{{i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} } \right|^{2} d\theta }$$
(A.5)
$$f_{rad}^{\parallel } = \frac{3}{8}\int\limits_{0}^{{\theta_{\hbox{max} } }} {\cos^{2} \theta \left| {e^{{ - i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} - \tilde{r}^{\text{p}} (\theta )e^{{i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} } \right|^{2} + \left| {e^{{ - i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} + \tilde{r}^{\text{s}} (\theta )e^{{i\varepsilon_{\sup }^{1/2} k_{0} h\,\cos \theta }} } \right|^{2} } \sin \theta d\theta$$
(A.6)
$$f_{rad}^{ave} = \frac{2}{3}f_{rad}^{\parallel } + \frac{1}{3}f_{rad}^{ \bot }$$
(A.7)

In equations A.2–A.7, \(s = {{k_{\parallel } } \mathord{\left/ {\vphantom {{k_{\parallel } } {k_{0} }}} \right. \kern-0pt} {k_{0} }}\), \(s_{ \bot ,\sup } (s) = {{k_{ \bot ,\sup } (s)} \mathord{\left/ {\vphantom {{k_{ \bot ,\sup } (s)} {k_{0} }}} \right. \kern-0pt} {k_{0} }} = \left( {\varepsilon_{\sup } - s^{2} } \right)^{1/2}\), \(k_{0} = {\omega \mathord{\left/ {\vphantom {\omega c}} \right. \kern-0pt} c}\), θ is a polar angle measured from the ⊥ direction, the collection angle θ max = 79.6°. k|| is the in-plane component of the k-vector varying from 0 to infinity. \(\tilde{r}^{p}\) and \(\tilde{r}^{s}\) are generalized superlattice’s Fresnel reflection coefficients for p- and s-polarized light. The reflection coefficients were calculated utilizing the recursive imbedding method [42, 57]. The integrals were numerically evaluated by using an adaptive Gauss-Kronrod quadrature method [58]. In the formulae, we assumed that intrinsic quantum yield of NV centers is close to unity [59]. F P and f rad were normalized by the total radiation power and the power emitted into the collection angle, respectively. Both powers corresponded to the case of the emitter immersed into homogeneous medium with dielectric permittivity εsup, which models well the reference sample in the experiment.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shalaginov, M.Y. et al. (2017). Hyperbolic Metamaterials for Single-Photon Sources and Nanolasers. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_5

Download citation

Publish with us

Policies and ethics