Skip to main content

Landau Damping—The Ultimate Limit of Field Confinement and Enhancement in Plasmonic Structures

  • Chapter
  • First Online:
Book cover Quantum Plasmonics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 185))

Abstract

When either the dimensions of plasmonic structures, or the degree of field localization in them, become comparable to the mean free path of electrons, Landau damping becomes the dominant source of loss in plasmonics. Landau damping is in the heart of nonlocality in the plasmonic response and it is manifested as surface-collision (or Kreibig) damping inherent in nanoscale object. Ultimately this loss prevents further localization of the optical field and limits the attainable plasmonic enhancement, no matter what is the intrinsic quality of the materials used in plasmonic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)

    Article  ADS  Google Scholar 

  2. S.A. Maier, Plasmonics: fundamentals and applications (Springer, 2007)

    Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  4. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  5. L. Novotny, Single molecule fluorescence in inhomogeneous environments. Appl. Phys. Lett. 69, 3806 (1996)

    Article  ADS  Google Scholar 

  6. J.B. Khurgin, How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015)

    Article  ADS  Google Scholar 

  7. Y. Wu, C. Zhang, N.M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X.-X. Liu, Greg K. Pribil, A. Alù, C.K. Shih, X. Li, Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 26, 6106–6110 (2014)

    Article  Google Scholar 

  8. J.B. Khurgin, A. Boltasseva, Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37, 768–779 (2012)

    Article  Google Scholar 

  9. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  ADS  Google Scholar 

  10. F.J. Garcıa de Abajo, Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008)

    Article  Google Scholar 

  11. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, A generalized nonlocal optical response theory for plasmonic nanostructures, Nat. Commun. 5 (2014)

    Google Scholar 

  12. S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A. Mortensen, Nonlocal optical response in metallic nanostructures. J. Phys. Condens. Matter 27, 1832014 (2015)

    Google Scholar 

  13. T. Christensen, W. Yan, S. Raza, S.A.P. Jauho, N.A. Mortensen, M. Wubs, Nonlocal response of metallic nanospheres probed by light, electrons, and atoms. ACS Nano 8(2), 1745–1758 (2014)

    Article  Google Scholar 

  14. A.V. Uskov, I.E. Protsenko, N.A. Mortensen, E.P. O’Reilly, Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration. Plasmonics 9, 185–192 (2014)

    Article  Google Scholar 

  15. C. Yannouleas, R.A. Broglia, Landau damping and wall dissipation in large metal clusters, Ann. Phys. 217, I 105–141 (1992)

    Google Scholar 

  16. R.A. Molina, D. Weinmann, R.A. Jalabert, Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles. Phys. Rev. B 65, 155427 (2002)

    Article  ADS  Google Scholar 

  17. Z. Yan, S. Gao, Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surf. Sci. 602, 460–464 (2008)

    Article  ADS  Google Scholar 

  18. T. Atay, J.H. Song, A.V. Nurmikko, Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime. Nano Lett. 4, 1627 (2004)

    Article  ADS  Google Scholar 

  19. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  20. M. Moskovits, D.H. Jeong, Engineering nanostructures for giant optical fields. Chem. Phys. Lett. 397, 91 (2004)

    Article  ADS  Google Scholar 

  21. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin, 1995)

    Book  Google Scholar 

  22. J.B. Khurgin, Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 178, 109–122 (2015)

    Article  Google Scholar 

  23. R. G. Chambers, The anomalous skin effect. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 215 1123 (1952): 481–97

    Google Scholar 

  24. J. Lindhard, On the properties of a gas of charged particles. Mat. Fys. Medd. Dan. Vid. 28(8), 1–57 (1954)

    MathSciNet  MATH  Google Scholar 

  25. P.B. Johnson, R.W. Christy, Optical constants of noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  26. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  27. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006)

    Article  ADS  Google Scholar 

  28. G. Sun, J.B. Khurgin, C.C. Yang, Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission. Appl. Phys. Lett. 95, 171103 (2009)

    Article  ADS  Google Scholar 

  29.  K. Tanaka, M. Tanaka, T. Sugiyama, Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt. Express. 13, 256–266 (2005)

    Google Scholar 

  30. I. V. Novikov and A. A. Maradudin, Channel polaritons. Phys. Rev. B. 66, 035403 (2002)

    Google Scholar 

  31. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005)

    Google Scholar 

  32. G. Sun, J. B. Khurgin, A. Bratkovsky, Coupled-mode theory of field enhancement in complex metal nanostructures. Phys. Rev. B. 84, 045415 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob B. Khurgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khurgin, J.B., Sun, G. (2017). Landau Damping—The Ultimate Limit of Field Confinement and Enhancement in Plasmonic Structures. In: Bozhevolnyi, S., Martin-Moreno, L., Garcia-Vidal, F. (eds) Quantum Plasmonics. Springer Series in Solid-State Sciences, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-45820-5_13

Download citation

Publish with us

Policies and ethics