Skip to main content

Variability Assessment of Label-Free LC-MS Experiments for Difference Detection

  • Chapter
  • First Online:
Book cover Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

Abstract

In the analysis of data acquired from label-free experiments by liquid chromatography coupled with mass spectrometry (LC-MS), accounting for potential sources of variability can improve the detection of true differences in ion abundance. Mixed effects models are commonly used to estimate variabilities due to heterogeneity of the biological specimen, differences in sample preparation, and instrument variation. In this chapter, we investigate the mixed effects models and evaluate their performance in difference detection, in comparison to other methods such as marginal t-test, which uses the average over analytical and technical replicates within each biological sample for statistical analysis. Experimental design including replication assignment and sample size calculation is discussed. These are highly dependent on the variation contributed by the different sources, which can be estimated from LC-MS pilot studies prior to running large-scale label-free experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of Royal Statistical Society: Series B (Methodological), 57, 289–300.

    MathSciNet  MATH  Google Scholar 

  2. Clough, T., Key, M., Ott, I., Ragg, S., Schadow, G., & Vitek, O. (2009). Protein quantification in label-free LC-MS experiments. Journal of Proteome Research, 8, 5275–5284.

    Article  Google Scholar 

  3. Clough, T., Thaminy, S., Ragg, S., Aebersold, R., & Vitek, O. (2012). Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinformatics, 13(Suppl 16), S6.

    Article  Google Scholar 

  4. Cui, Q., Lewis, I. A., Hegeman, A. D., Anerson, M. E., Li, J., Schulte, C., et al. (2008). Metabolite identification via the Madison Metabolomics Consortium Database. Nature Biotechnology, 26, 162–164.

    Article  Google Scholar 

  5. Datta, S., & Glen, A. S. (2005). Rank-sum tests for clustered data. Journal of the American Statistical Association, 100, 908–915.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dutta, S., & Datta, S. (2016). A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative. Biometrics, 72(2), 432–440.

    Article  MATH  Google Scholar 

  7. Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid search. Nucleic Acids Research, 35, W606–W612.

    Article  Google Scholar 

  8. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  9. Karpievitch, Y. V., Polpitiya, A. D., Anderson G. A., Smith, R. D., & Dabney, A. R. (2010). Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. The Annals of Applied Statistics, 4, 1797–1823.

    Article  MATH  Google Scholar 

  10. Karpievitch, Y. V., Stanley, J., Taverner, T., Huang, J., Adkins, J. N., Ansong, C., et al. (2009). A statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformatics, 25, 2028–2034.

    Article  Google Scholar 

  11. Nilsson, T., Mann, M., Aebersold, R., Yates III, J. R., Bairoch, A., & Bergeron, J. J. (2010). Mass spectrometry in high-throughput proteomics: Ready for the big time. Nature Methods, 7, 681–685.

    Article  Google Scholar 

  12. Oberg, A. L., & Vitek, O. (2009). Statistical design of quantitative mass spectrometry-based proteomic experiments. Journal of Proteome Research, 8, 2144–2156.

    Article  Google Scholar 

  13. Patel, V. J., Thalassinos, K., Slade, S. E., Connolly, J. B., Crombie, A., Murrell, J. C., et al. (2009). A comparison of labeling and label-free mass spectrometry-based proteomics approaches. Journal of Proteome Research, 8, 3752–3759.

    Article  Google Scholar 

  14. Ressom, H. W., Xiao J. F., Tuli, L., Varghese, R. S., Zhou, B., Tsai, T., et al. (2012). Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Analytica Chimica Acta, 743, 90–100.

    Article  Google Scholar 

  15. Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751.

    Article  Google Scholar 

  16. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  Google Scholar 

  17. Tautenhahn, R., Bottcher, C., & Neumann, S. (2007). Annotation of LC/ESI-MS mass signals. In Proceedings of the First International Conference on Bioinformatics Research and Development (pp. 371–380).

    Google Scholar 

  18. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  19. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 91–108.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsai, T. H., Tadesse, M. G., Di Poto, C., Pannel, L. K., Mechref, Y., Wang, Y., et al. (2013). Multi-profile Bayesian alignment model for LC-MS data analysis with integration of internal standards. Bioinformatics, 29, 2274–2280.

    Article  Google Scholar 

  21. Wainwright, M. (2009). Sharp thresholds for noisy and high-dimensional recovery of sparsity using 1-constrained quadratic programming (lasso). IEEE Transactions on Information Theory, 55, 2183–2202.

    Article  MathSciNet  Google Scholar 

  22. Whishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  Google Scholar 

  23. Xiao, J. F., Varghese, R. S., Zhou, B., Ranjbar, M. R., Zhao, Y., Tsai, T. H., et al. (2012). LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort. Journal of Proteome Research, 11, 5914–5923.

    Google Scholar 

  24. Xiao, J. F., Zhao, Y., Varghese, R. S., Zhou, B., Di Poto, C., Zhang, L., et al. (2014). Evaluation of metabolite biomarkers for hepatocellular carcinoma through stratified analysis by gender, race and alcoholic cirrhosis. Cancer Epidemiology, Biomarkers & Prevention, 23, 64–72.

    Google Scholar 

  25. Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 38(2), 894–942.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine Learning Research, 7, 2541–2563.

    MathSciNet  MATH  Google Scholar 

  27. Zhou, B., Wang, J., & Ressom, H. W. (2012). MataboSearch: Tool for mass-based metabolite identification using multiple databases. PLoS One, 7, e40096.

    Article  Google Scholar 

  28. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Methodological), 67, 301–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is in part supported by the National Institutes of Health Grants U01CA185188 and R01GM086746 awarded to HWR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habtom W. Ressom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Tsai, TH., Di Poto, C., Pannell, L.K., Tadesse, M.G., Ressom, H.W. (2017). Variability Assessment of Label-Free LC-MS Experiments for Difference Detection. In: Datta, S., Mertens, B. (eds) Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45809-0_9

Download citation

Publish with us

Policies and ethics