Skip to main content

Integrin-Mediated Interactions in Cartilage Physiology and Pathophysiology

  • Chapter
  • First Online:
Cartilage
  • 1156 Accesses

Abstract

The development and homeostasis of cartilaginous tissues are regulated by diverse microenvironmental cues including integrin-mediated interactions between chondrocytes and the extracellular matrix (ECM). Integrins are membrane receptors responsible for bi-directional communication between the cells and the surrounding by transmitting physicochemical signals through adhesion complexes. In addition, integrins are involved in sensing mechanical stress signals generated by the ECM and transduce them into the cell interior converting physical stimuli to biochemical signaling. Integrin-activated signaling cascades modulate various chondrocyte functions and play important roles in cartilage morphogenesis, homeostasis, and repair. This chapter will summarize and discuss the role of integrins in the physiology and pathophysiology of the growth plate and articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam M, Deyl Z (1983) Altered expression of collagen phenotype in osteoarthrosis. Clin Chim Acta: Int J Clin Chem 133(1):25–32

    Article  CAS  Google Scholar 

  • Aikawa S, Hashimoto T, Kano K, Aoki J (2015) Lysophosphatidic acid as a lipid mediator with multiple biological actions. J Biochem 157(2):81–89. doi:10.1093/jb/mvu077

    Article  CAS  PubMed  Google Scholar 

  • Arner EC, Tortorella MD (1995) Signal transduction through chondrocyte integrin receptors induces matrix metalloproteinase synthesis and synergizes with interleukin-1. Arthritis Rheum 38(9):1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Aszódi A (2016) The cartilaginous growth plate. In: Grässel S, Aszódi A (eds) Cartilage: volume 1: Physiology and development. Springer International Publishing, Cham, pp 83–113. doi:10.1007/978-3-319-29568-8_4

  • Aszodi A, Bateman JF, Gustafsson E, Boot-Handford R, Fassler R (2000) Mammalian skeletogenesis and extracellular matrix: what can we learn from knockout mice? Cell Struct Funct 25(2):73–84

    Article  CAS  PubMed  Google Scholar 

  • Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17(19):2465–2479. doi:10.1101/gad.277003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader DL, Salter DM, Chowdhury TT (2011) Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011:979032. doi:10.1155/2011/979032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang OS, Kim EJ, Chung JG, Lee SR, Park TK, Kang SS (2000) Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem Biophys Res Commun 278(3):522–529. doi:10.1006/bbrc.2000.3831

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson T, Aszodi A, Nicolae C, Hunziker EB, Lundgren-Akerlund E, Fassler R (2005) Loss of alpha10beta1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. J Cell Sci 118(Pt 5):929–936. doi:10.1242/jcs.01678

    Article  CAS  PubMed  Google Scholar 

  • Bicknell LS, Morgan T, Bonafe L, Wessels MW, Bialer MG, Willems PJ, Cohn DH, Krakow D, Robertson SP (2005) Mutations in FLNB cause boomerang dysplasia. J Med Genet 42(7):e43. doi:10.1136/jmg.2004.029967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingel SA, Sande RD (1982) Chondrodysplasia in the Norwegian Elkhound. Am J Pathol 107(2):219–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blumbach K, Niehoff A, Belgardt BF, Ehlen HW, Schmitz M, Hallinger R, Schulz JN, Bruning JC, Krieg T, Schubert M, Gullberg D, Eckes B (2012) Dwarfism in mice lacking collagen-binding integrins alpha2beta1 and alpha11beta1 is caused by severely diminished IGF-1 levels. J Biol Chem 287(9):6431–6440. doi:10.1074/jbc.M111.283119

    Article  CAS  PubMed  Google Scholar 

  • Bohm BB, Aigner T, Roy B, Brodie TA, Blobel CP, Burkhardt H (2005) Homeostatic effects of the metalloproteinase disintegrin ADAM15 in degenerative cartilage remodeling. Arthritis Rheum 52(4):1100–1109. doi:10.1002/art.20974

    Article  PubMed  CAS  Google Scholar 

  • Bohm BB, Schirner A, Burkhardt H (2009) ADAM15 modulates outside-in signalling in chondrocyte-matrix interactions. J Cell Mol Med 13(8B):2634–2644. doi:10.1111/j.1582-4934.2008.00490.x

    Article  PubMed  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163. doi:10.1002/bit.20828

    Article  CAS  PubMed  Google Scholar 

  • Bosserhoff AK, Kondo S, Moser M, Dietz UH, Copeland NG, Gilbert DJ, Jenkins NA, Buettner R, Sandell LJ (1997) Mouse CD-RAP/MIA gene: structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Dev Dyn 208(4):516–525. doi:10.1002/(sici)1097-0177(199704)208:4<516::aid-aja7>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  • Bougault C, Cueru L, Bariller J, Malbouyres M, Paumier A, Aszodi A, Berthier Y, Mallein-Gerin F, Trunfio-Sfarghiu AM (2013) Alteration of cartilage mechanical properties in absence of beta1 integrins revealed by rheometry and FRAP analyses. J Biomech 46(10):1633–1640. doi:10.1016/j.jbiomech.2013.04.013

    Article  PubMed  Google Scholar 

  • Bouvard D, Brakebusch C, Gustafsson E, Aszodi A, Bengtsson T, Berna A, Fassler R (2001) Functional consequences of integrin gene mutations in mice. Circ Res 89(3):211–223

    Article  CAS  PubMed  Google Scholar 

  • Briggs MD, Bell PA, Wright MJ, Pirog KA (2015) New therapeutic targets in rare genetic skeletal diseases. Expert Opin Orphan Drugs 3(10):1137–1154. doi:10.1517/21678707.2015.1083853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3). doi:10.1101/cshperspect.a004994 a004994 [pii] cshperspect.a004994 [pii]

  • Camper L, Hellman U, Lundgren-Akerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273(32):20383–20389

    Article  CAS  PubMed  Google Scholar 

  • Camper L, Holmvall K, Wangnerud C, Aszodi A, Lundgren-Akerlund E (2001) Distribution of the collagen-binding integrin alpha10beta1 during mouse development. Cell Tissue Res 306(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Lee V, Adams ME, Kiani C, Zhang Y, Hu W, Yang BB (1999) beta-Integrin-collagen interaction reduces chondrocyte apoptosis. Matrix Biol: J Int Soc Matrix Biol 18(4):343–355

    Article  CAS  Google Scholar 

  • Chai DH, Arner EC, Griggs DW, Grodzinsky AJ (2010) Alphav and beta1 integrins regulate dynamic compression-induced proteoglycan synthesis in 3D gel culture by distinct complementary pathways. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 18(2):249–256. doi:10.1016/j.joca.2009.09.002

    Article  CAS  Google Scholar 

  • Chang CF, Lee MW, Kuo PY, Wang YJ, Tu YH, Hung SC (2007) Three-dimensional collagen fiber remodeling by mesenchymal stem cells requires the integrin-matrix interaction. J Biomed Mater Res A 80(2):466–474. doi:10.1002/jbm.a.30963

    Article  PubMed  CAS  Google Scholar 

  • Choocheep K, Hatano S, Takagi H, Watanabe H, Kimata K, Kongtawelert P, Watanabe H (2010) Versican facilitates chondrocyte differentiation and regulates joint morphogenesis. J Biol Chem 285(27):21114–21125. doi:10.1074/jbc.M109.096479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury TT, Salter DM, Bader DL, Lee DA (2004) Integrin-mediated mechanotransduction processes in TGFbeta-stimulated monolayer-expanded chondrocytes. Biochem Biophys Res Commun 318(4):873–881. doi:10.1016/j.bbrc.2004.04.107

    Article  CAS  PubMed  Google Scholar 

  • Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62(10):2973–2983. doi:10.1002/art.27624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly JT, Garcia AJ, Levenston ME (2007) Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28(6):1071–1083. doi:10.1016/j.biomaterials.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  • Connelly JT, Garcia AJ, Levenston ME (2008) Interactions between integrin ligand density and cytoskeletal integrity regulate BMSC chondrogenesis. J Cell Physiol 217(1):145–154. doi:10.1002/jcp.21484

    Article  CAS  PubMed  Google Scholar 

  • Cortial D, Gouttenoire J, Rousseau CF, Ronziere MC, Piccardi N, Msika P, Herbage D, Mallein-Gerin F, Freyria AM (2006) Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 14(7):631–640. doi:10.1016/j.joca.2006.01.008

    Article  CAS  Google Scholar 

  • Del Carlo M, Schwartz D, Erickson EA, Loeser RF (2007) Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42(9):1350–1358. doi:10.1016/j.freeradbiomed.2007.01.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietz UH, Sandell LJ (1996) Cloning of a retinoic acid-sensitive mRNA expressed in cartilage and during chondrogenesis. J Biol Chem 271(6):3311–3316

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Guo D, Homandberg GA (2008) The cartilage chondrolytic mechanism of fibronectin fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 16(10):1253–1262. doi:10.1016/j.joca.2008.02.015

    Article  CAS  Google Scholar 

  • Ding L, Guo D, Homandberg GA (2009) Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-kappaB and protein kinase Cdelta. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 17(10):1385–1392. doi:10.1016/j.joca.2009.03.024

    Article  CAS  Google Scholar 

  • Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Buckwalter JA, Guo D, Martin JA (2010) Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 18(11):1509–1517. doi:10.1016/j.joca.2010.08.014

    Article  CAS  Google Scholar 

  • Ding L, Guo D, Homandberg GA, Buckwalter JA, Martin JA (2014) A single blunt impact on cartilage promotes fibronectin fragmentation and upregulates cartilage degrading stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model. J Orthop Res 32(6):811–818. doi:10.1002/jor.22610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docheva D, Popov C, Alberton P, Aszodi A (2014) Integrin signaling in skeletal development and function. Birth Defects Res C Embryol Today 102(1):13–36. doi:10.1002/bdrc.21059

    Article  CAS  Google Scholar 

  • Dodds, GS (1930) Row formation and other types of arrangement of cartilage cells in endochondral ossification. Anat Rec 46: 385–399. doi:10.1002/ar.1090460409

  • Durr J, Goodman S, Potocnik A, von der Mark H, von der Mark K (1993) Localization of beta 1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 207(2):235–244. doi:10.1006/excr.1993.1189

    Article  CAS  PubMed  Google Scholar 

  • Durr J, Lammi P, Goodman SL, Aigner T, von der Mark K (1996) Identification and immunolocalization of laminin in cartilage. Exp Cell Res 222(1):225–233. doi:10.1006/excr.1996.0028

    Article  CAS  PubMed  Google Scholar 

  • Dzamba BJ, Bultmann H, Akiyama SK, Peters DM (1994) Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem 269(30):19646–19652

    CAS  PubMed  Google Scholar 

  • El-Bikai R, Welman M, Margaron Y, Cote JF, Macqueen L, Buschmann MD, Fahmi H, Shi Q, Maghni K, Fernandes JC, Benderdour M (2010) Perturbation of adhesion molecule-mediated chondrocyte-matrix interactions by 4-hydroxynonenal binding: implication in osteoarthritis pathogenesis. Arthritis Res Ther 12(5):R201. doi:10.1186/ar3173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  • Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, Kurisu K, Suzuki F (1997) Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res 12(7):1124–1132. doi:10.1359/jbmr.1997.12.7.1124

    Article  CAS  PubMed  Google Scholar 

  • Farrington-Rock C, Firestein MH, Bicknell LS, Superti-Furga A, Bacino CA, Cormier-Daire V, Le Merrer M, Baumann C, Roume J, Rump P, Verheij JB, Sweeney E, Rimoin DL, Lachman RS, Robertson SP, Cohn DH, Krakow D (2006) Mutations in two regions of FLNB result in atelosteogenesis I and III. Hum Mutat 27(7):705–710. doi:10.1002/humu.20348

    Article  CAS  PubMed  Google Scholar 

  • Farrington-Rock C, Kirilova V, Dillard-Telm L, Borowsky AD, Chalk S, Rock MJ, Cohn DH, Krakow D (2008) Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum Mol Genet 17(5):631–641. doi:10.1093/hmg/ddm188

    Article  CAS  PubMed  Google Scholar 

  • Fassler R, Meyer M (1995) Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 9(15):1896–1908

    Article  CAS  PubMed  Google Scholar 

  • Fichter M, Korner U, Schomburg J, Jennings L, Cole AA, Mollenhauer J (2006) Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. J Orthop Res 24(1):63–70. doi:10.1002/jor.20001

    Article  CAS  PubMed  Google Scholar 

  • Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 46(9):2368–2376. doi:10.1002/art.10502

    Article  CAS  PubMed  Google Scholar 

  • Gannon JM, Walker G, Fischer M, Carpenter R, Thompson RC Jr, Oegema TR Jr (1991) Localization of type X collagen in canine growth plate and adult canine articular cartilage. J Orthop Res 9(4):485–494. doi:10.1002/jor.1100090404

    Article  CAS  PubMed  Google Scholar 

  • Garciadiego-Cazares D, Rosales C, Katoh M, Chimal-Monroy J (2004) Coordination of chondrocyte differentiation and joint formation by alpha5beta1 integrin in the developing appendicular skeleton. Development 131(19):4735–4742. doi:10.1242/dev.01345

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.1038/nrm2593

    Article  CAS  PubMed  Google Scholar 

  • Gigout A, Jolicoeur M, Nelea M, Raynal N, Farndale R, Buschmann MD (2008) Chondrocyte aggregation in suspension culture is GFOGER-GPP- and beta1 integrin-dependent. J Biol Chem 283(46):31522–31530. doi:10.1074/jbc.M804234200

    Article  CAS  PubMed  Google Scholar 

  • Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634. doi:10.1002/jcp.21258

    Article  CAS  PubMed  Google Scholar 

  • Gouttenoire J, Bougault C, Aubert-Foucher E, Perrier E, Ronziere MC, Sandell L, Lundgren-Akerlund E, Mallein-Gerin F (2010) BMP-2 and TGF-beta1 differentially control expression of type II procollagen and alpha 10 and alpha 11 integrins in mouse chondrocytes. Eur J Cell Biol 89(4):307–314. doi:10.1016/j.ejcb.2009.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grashoff C, Aszodi A, Sakai T, Hunziker EB, Fassler R (2003) Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep 4(4):432–438. doi:10.1038/sj.embor.embor801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 9(4):357–364. doi:10.1053/joca.2000.0396

    Article  CAS  Google Scholar 

  • Gullberg DE, Lundgren-Åkerlund E (2002) Collagen-binding I domain integrins – what do they do? Prog Histochem Cytochem 37(1):3–54, doi:http://dx.doi.org/10.1016/S0079-6336(02)80008-0

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18(19):2404–2417. doi:10.1101/gad.1230704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Ding L, Homandberg GA (2009) Telopeptides of type II collagen upregulate proteinases and damage cartilage but are less effective than highly active fibronectin fragments. Inflamm Res: Off J Eur Histamine Res Soc 58(3):161–169. doi:10.1007/s00011-009-8090-5

    Article  CAS  Google Scholar 

  • Hall-Glenn F, Aivazi A, Akopyan L, Ong JR, Baxter RR, Benya PD, Goldschmeding R, van Nieuwenhoven FA, Hunziker EB, Lyons KM (2013) CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress. J Cell Commun Signal 7(3):219–230. doi:10.1007/s12079-013-0201-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104(3):341–351

    Article  CAS  PubMed  Google Scholar 

  • Hausler G, Helmreich M, Marlovits S, Egerbacher M (2002) Integrins and extracellular matrix proteins in the human childhood and adolescent growth plate. Calcif Tissue Int 71(3):212–218. doi:10.1007/s00223-001-2083-x

    Article  CAS  PubMed  Google Scholar 

  • Hirsch MS, Lunsford LE, Trinkaus-Randall V, Svoboda KK (1997) Chondrocyte survival and differentiation in situ are integrin mediated. Dev Dyn 210(3):249–263. doi:10.1002/(sici)1097-0177(199711)210:3<249::aid-aja6>3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  • Hocking DC, Sottile J, McKeown-Longo PJ (1998) Activation of distinct alpha5beta1-mediated signaling pathways by fibronectin’s cell adhesion and matrix assembly domains. J Cell Biol 141(1):241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holledge MM, Millward-Sadler SJ, Nuki G, Salter DM (2008) Mechanical regulation of proteoglycan synthesis in normal and osteoarthritic human articular chondrocytes – roles for alpha5 and alphaVbeta5 integrins. Biorheology 45(3–4):275–288

    PubMed  Google Scholar 

  • Homandberg GA, Hui F (1994) Arg-Gly-Asp-Ser peptide analogs suppress cartilage chondrolytic activities of integrin-binding and nonbinding fibronectin fragments. Arch Biochem Biophys 310(1):40–48. doi:10.1006/abbi.1994.1137

    Article  CAS  PubMed  Google Scholar 

  • Homandberg GA, Meyers R, Williams JM (1993) Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 20(8):1378–1382

    CAS  PubMed  Google Scholar 

  • Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(Pt 3):751–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homandberg GA, Costa V, Ummadi V, Pichika R (2002a) Antisense oligonucleotides to the integrin receptor subunit alpha(5) decrease fibronectin fragment mediated cartilage chondrolysis. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 10(5):381–393. doi:10.1053/joca.2002.0524

    Article  CAS  Google Scholar 

  • Homandberg GA, Costa V, Wen C (2002b) Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 10(12):938–949

    Article  CAS  Google Scholar 

  • Hoyland JA, Thomas JT, Donn R, Marriott A, Ayad S, Boot-Handford RP, Grant ME, Freemont AJ (1991) Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. Bone Miner 15(2):151–163

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Lu J, Lian G, Zhang J, Hecht JL, Sheen VL (2014) Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS One 9(2):e89352. doi:10.1371/journal.pone.0089352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323. doi:10.1634/stemcells.22-3-313

    Article  CAS  PubMed  Google Scholar 

  • Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903, 119/19/3901 [pii]. doi:10.1242/jcs.03098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Hashimoto R, Matsumoto A, Jahan E, Rafiq AM, Udagawa J, Hatta T, Otani H (2014) In vivo analysis of Arg-Gly-Asp sequence/integrin alpha5beta1-mediated signal involvement in embryonic enchondral ossification by exo utero development system. J Bone Miner Res 29(7):1554–1563. doi:10.1002/jbmr.2166

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130(12):2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonski CL, Ferguson S, Pozzi A, Clark AL (2014) Integrin alpha1beta1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445(1):184–190. doi:10.1016/j.bbrc.2014.01.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KW, Buckwalter JA, Martin JA (2014) Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res 32(3):448–454. doi:10.1002/jor.22523

    Article  CAS  PubMed  Google Scholar 

  • Jennings L, Wu L, King KB, Hammerle H, Cs-Szabo G, Mollenhauer J (2001) The effects of collagen fragments on the extracellular matrix metabolism of bovine and human chondrocytes. Connect Tissue Res 42(1):71–86

    Article  CAS  PubMed  Google Scholar 

  • Jin EJ, Choi YA, Kyun Park E, Bang OS, Kang SS (2007) MMP-2 functions as a negative regulator of chondrogenic cell condensation via down-regulation of the FAK-integrin beta1 interaction. Dev Biol 308(2):474–484. doi:10.1016/j.ydbio.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Rose DM, Terkeltaub RA (2008) Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 121(Pt 13):2256–2264. doi:10.1242/jcs.011262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16(5):734–743. doi:10.1016/j.devcel.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  • Kawaki H, Kubota S, Suzuki A, Lazar N, Yamada T, Matsumura T, Ohgawara T, Maeda T, Perbal B, Lyons KM, Takigawa M (2008) Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 23(11):1751–1764. doi:10.1359/jbmr.080615

    Article  CAS  PubMed  Google Scholar 

  • Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C: Embryo Today 90(1):75–85. doi:10.1002/bdrc.20173

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee JW (2009) Targeting of focal adhesion kinase by small interfering RNAs reduces chondrocyte redifferentiation capacity in alginate beads culture with type II collagen. J Cell Physiol 218(3):623–630. doi:10.1002/jcp.21637

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Song J, Han J, Kim Y, Chun CH, Jin EJ (2013) Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-alpha1. Cell Signal 25(12):2878–2887. doi:10.1016/j.cellsig.2013.08.034

    Article  CAS  PubMed  Google Scholar 

  • Klatt AR, Paul-Klausch B, Klinger G, Kuhn G, Renno JH, Banerjee M, Malchau G, Wielckens K (2009) A critical role for collagen II in cartilage matrix degradation: collagen II induces pro-inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res 27(1):65–70. doi:10.1002/jor.20716

    Article  CAS  PubMed  Google Scholar 

  • Knudson W, Loeser RF (2002) CD44 and integrin matrix receptors participate in cartilage homeostasis. Cell Mol Life Sci: CMLS 59(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Krakow D (2015) Skeletal dysplasias. Clin Perinatol 42(2):301–319. doi:10.1016/j.clp.2015.03.003,viii

    Article  PubMed  PubMed Central  Google Scholar 

  • Krakow D, Rimoin DL (2010) The skeletal dysplasias. Genet Med: Off J Am Coll Med Genet 12(6):327–341. doi:10.1097/GIM.0b013e3181daae9b

    Article  Google Scholar 

  • Krakow D, Robertson SP, King LM, Morgan T, Sebald ET, Bertolotto C, Wachsmann-Hogiu S, Acuna D, Shapiro SS, Takafuta T, Aftimos S, Kim CA, Firth H, Steiner CE, Cormier-Daire V, Superti-Furga A, Bonafe L, Graham JM Jr, Grix A, Bacino CA, Allanson J, Bialer MG, Lachman RS, Rimoin DL, Cohn DH (2004) Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet 36(4):405–410. doi:10.1038/ng1319

    Article  CAS  PubMed  Google Scholar 

  • Krupska I, Bruford EA, Chaqour B (2015) Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genomics 9(1):24. doi:10.1186/s40246-015-0046-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurtis MS, Schmidt TA, Bugbee WD, Loeser RF, Sah RL (2003) Integrin-mediated adhesion of human articular chondrocytes to cartilage. Arthritis Rheum 48(1):110–118. doi:10.1002/art.10704

    Article  CAS  PubMed  Google Scholar 

  • Kyostila K, Lappalainen AK, Lohi H (2013) Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10. PLoS One 8(9):e75621. doi:10.1371/journal.pone.0075621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapadula G, Iannone F, Zuccaro C, Grattagliano V, Covelli M, Patella V, Lo Bianco G, Pipitone V (1998) Chondrocyte phenotyping in human osteoarthritis. Clin Rheumatol 17(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437(7056):275–280. doi:10.1038/nature03922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GM, Loeser RF (1999) Cell surface receptors transmit sufficient force to bend collagen fibrils. Exp Cell Res 248(1):294–305. doi:10.1006/excr.1999.4418

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Malpeli M, Cancedda R, Utani A, Yamada Y, Kleinman HK (1997) Laminin chain expression by chick chondrocytes and mouse cartilaginous tissues in vivo and in vitro. Exp Cell Res 236(1):212–222. doi:10.1006/excr.1997.3710

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM (2000) Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 15(8):1501–1509. doi:10.1359/jbmr.2000.15.8.1501

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Al-Jamal R, Salter DM (2002) Activation of integrin-RACK1/PKCalpha signalling in human articular chondrocyte mechanotransduction. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 10(11):890–897

    Article  Google Scholar 

  • Lefebvre V, Bhattaram P (2010) Vertebrate skeletogenesis. Curr Top Dev Biol 90:291–317. doi:10.1016/s0070-2153(10)90008-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418. doi:10.1101/gad.175870923/4/397[pii]

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 8(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Ren K, Liu F, Cui W, Wang Q, Chen Z, Fan W (2013) Periodic mechanical stress stimulates the FAK mitogenic signal in rat chondrocytes through ERK1/2 activity. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 32(4):915–930. doi:10.1159/000354495

    Article  CAS  Google Scholar 

  • Loeser RF (2014) Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol: J Int Soc Matrix Biol 39:11–16. doi:10.1016/j.matbio.2014.08.007

    Article  CAS  Google Scholar 

  • Loeser RF, Carlson CS, McGee MP (1995) Expression of beta 1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp Cell Res 217(2):248–257. doi:10.1006/excr.1995.1084

    Article  CAS  PubMed  Google Scholar 

  • Loeser RF, Forsyth CB, Samarel AM, Im HJ (2003) Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem 278(27):24577–24585. doi:10.1074/jbc.M304530200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ (2002) Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis (New York, NY: 2000) 33(2):77–80. doi:10.1002/gene.10092

    Article  CAS  Google Scholar 

  • Long D, Blake S, Song XY, Lark M, Loeser RF (2008) Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther 10(1):R23. doi:10.1186/ar2376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long DL, Willey JS, Loeser RF (2013) Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum 65(6):1561–1568. doi:10.1002/art.37922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Lian G, Lenkinski R, De Grand A, Vaid RR, Bryce T, Stasenko M, Boskey A, Walsh C, Sheen V (2007) Filamin B mutations cause chondrocyte defects in skeletal development. Hum Mol Genet 16(14):1661–1675. doi:10.1093/hmg/ddm114

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Doulabi BZ, Huang C, Bank RA, Helder MN (2010) Collagen type II enhances chondrogenesis in adipose tissue-derived stem cells by affecting cell shape. Tissue Eng A 16(1):81–90. doi:10.1089/ten.TEA.2009.0222

    Article  CAS  Google Scholar 

  • Lucchinetti E, Bhargava MM, Torzilli PA (2004) The effect of mechanical load on integrin subunits alpha5 and beta1 in chondrocytes from mature and immature cartilage explants. Cell Tissue Res 315(3):385–391. doi:10.1007/s00441-003-0836-8

    Article  CAS  PubMed  Google Scholar 

  • Lucic D, Mollenhauer J, Kilpatrick KE, Cole AA (2003) N-telopeptide of type II collagen interacts with annexin V on human chondrocytes. Connect Tissue Res 44(5):225–239

    Article  CAS  PubMed  Google Scholar 

  • Lundgren-Akerlund E, Aszodi A (2014) Integrin alpha10beta1: a collagen receptor critical in skeletal development. Adv Exp Med Biol 819:61–71. doi:10.1007/978-94-017-9153-3_4

    Article  PubMed  CAS  Google Scholar 

  • Ma SU, Garciadiego-CÁZares D, Vargas C, Chimal-Monroy J, De LeÓN LD (1998) The spatial pattern of integrins during development of mouse articular cartilagea. Ann N Y Acad Sci 857(1):241–244. doi:10.1111/j.1749-6632.1998.tb10122.x

    Article  CAS  Google Scholar 

  • Matsumoto K, Li Y, Jakuba C, Sugiyama Y, Sayo T, Okuno M, Dealy CN, Toole BP, Takeda J, Yamaguchi Y, Kosher RA (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 136(16):2825–2835. doi:10.1242/dev.038505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  CAS  PubMed  Google Scholar 

  • McNulty AL, Leddy HA, Liedtke W, Guilak F (2015) TRPV4 as a therapeutic target for joint diseases. Naunyn Schmiedeberg’s Arch Pharmacol 388(4):437–450. doi:10.1007/s00210-014-1078-x

    Article  CAS  Google Scholar 

  • Meyer EG, Buckley CT, Steward AJ, Kelly DJ (2011) The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells. J Mech Behav Biomed Mater 4(7):1257–1265. doi:10.1016/j.jmbbm.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  • Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32(3):435–446

    Article  CAS  PubMed  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Lee H, Nishida K, Caldwell H, Nuki G, Salter DM (1999) Integrin-regulated secretion of interleukin 4: a novel pathway of mechanotransduction in human articular chondrocytes. J Cell Biol 145(1):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millward-Sadler SJ, Wright MO, Davies LW, Nuki G, Salter DM (2000) Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes. Arthritis Rheum 43(9):2091–2099. doi:10.1002/1529-0131(200009)43:9<2091::aid-anr21>3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  • Miosge N, Hartmann M, Maelicke C, Herken R (2004) Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol 122(3):229–236. doi:10.1007/s00418-004-0697-6

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Bosserhoff AK, Hunziker EB, Sandell L, Fassler R, Buettner R (2002) Ultrastructural cartilage abnormalities in MIA/CD-RAP-deficient mice. Mol Cell Biol 22(5):1438–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura F, Stossel TP, Hartwig JH (2011) The filamins: organizers of cell structure and function. Cell Adhes Migr 5(2):160–169

    Article  Google Scholar 

  • Nishida T, Kawaki H, Baxter RM, Deyoung RA, Takigawa M, Lyons KM (2007) CCN2 (connective tissue growth factor) is essential for extracellular matrix production and integrin signaling in chondrocytes. J Cell Commun Signal 1(1):45–58. doi:10.1007/s12079-007-0005-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishioka T, Arima N, Kano K, Hama K, Itai E, Yukiura H, Kise R, Inoue A, Kim SH, Solnica-Krezel L, Moolenaar WH, Chun J, Aoki J (2016) ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation. Sci Rep 6:23433. doi:10.1038/srep23433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 18(6):839–848. doi:10.1016/j.joca.2009.08.013

    Article  CAS  Google Scholar 

  • Orazizadeh M, Lee HS, Groenendijk B, Sadler SJ, Wright MO, Lindberg FP, Salter DM (2008) CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Res Ther 10(1):R4. doi:10.1186/ar2350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostergaard K, Salter DM, Petersen J, Bendtzen K, Hvolris J, Andersen CB (1998) Expression of alpha and beta subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann Rheum Dis 57(5):303–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS, Chuong CM (1993) Tenascin is associated with articular cartilage development. Dev Dyn 198(2):123–134. doi:10.1002/aja.1001980206

    Article  CAS  PubMed  Google Scholar 

  • Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C: Embryo Today 75(3):237–248. doi:10.1002/bdrc.20050

    Article  CAS  PubMed  Google Scholar 

  • Pala D, Kapoor M, Woods A, Kennedy L, Liu S, Chen S, Bursell L, Lyons KM, Carter DE, Beier F, Leask A (2008) Focal adhesion kinase/Src suppresses early chondrogenesis: central role of CCN2. J Biol Chem 283(14):9239–9247. doi:10.1074/jbc.M705175200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelaez D, Huang CY, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18(1):93–102. doi:10.1089/scd.2008.0030

    Article  CAS  PubMed  Google Scholar 

  • Peters JH, Loredo GA, Benton HP (2002) Is osteoarthritis a ‘fibronectin-integrin imbalance disorder’? Osteoarthritis and cartilage / OARS. Osteoarthr Res Soc 10(11):831–835

    Article  CAS  Google Scholar 

  • Peters MA, Wendholt D, Strietholt S, Frank S, Pundt N, Korb-Pap A, Joosten LA, van den Berg WB, Kollias G, Eckes B, Pap T (2012) The loss of alpha2beta1 integrin suppresses joint inflammation and cartilage destruction in mouse models of rheumatoid arthritis. Arthritis Rheum 64(5):1359–1368. doi:10.1002/art.33487

    Article  CAS  PubMed  Google Scholar 

  • Pichika R, Homandberg GA (2004) Fibronectin fragments elevate nitric oxide (NO) and inducible NO synthetase (iNOS) levels in bovine cartilage and iNOS inhibitors block fibronectin fragment mediated damage and promote repair. Inflamm Res: Off J Eur Histamine Res Soc 53(8):405–412. doi:10.1007/s00011-004-1279-8

    Article  CAS  Google Scholar 

  • Poole AR, Rosenberg LC, Reiner A, Ionescu M, Bogoch E, Roughley PJ (1996) Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res 14(5):681–689. doi:10.1002/jor.1100140502

    Article  CAS  PubMed  Google Scholar 

  • Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res (391 Suppl):S26–33

    Google Scholar 

  • Prasadam I, van Gennip S, Friis T, Shi W, Crawford R, Xiao Y (2010) ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum 62(5):1349–1360. doi:10.1002/art.27397

    Article  CAS  PubMed  Google Scholar 

  • Pulai JI, Jr. Del Carlo M, Loeser RF (2002) The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 46(6):1528–1535. doi:10.1002/art.10334

    Article  CAS  PubMed  Google Scholar 

  • Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF (2005) NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J Immunol 174(9):5781–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raducanu A, Hunziker EB, Drosse I, Aszodi A (2009) Beta1 integrin deficiency results in multiple abnormalities of the knee joint. J Biol Chem 284(35):23780–23792. doi:10.1074/jbc.M109.039347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter W (2009) Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med 266(4):390–405. doi:10.1111/j.1365-2796.2009.02153.x

    Article  CAS  PubMed  Google Scholar 

  • Ronziere MC, Aubert-Foucher E, Gouttenoire J, Bernaud J, Herbage D, Mallein-Gerin F (2005) Integrin alpha1beta1 mediates collagen induction of MMP-13 expression in MC615 chondrocytes. Biochim Biophys Acta 1746(1):55–64. doi:10.1016/j.bbamcr.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Hiripi L, Glumoff V, Brandau O, Eerola R, Vuorio E, Bosze Z, Fassler R, Aszodi A (2001) Stage-and tissue-specific expression of a Col2a1-Cre fusion gene in transgenic mice. Matrix Biol: J Int Soc Matrix Biol 19(8):761–767

    Article  CAS  Google Scholar 

  • Salter DM, Godolphin JL, Gourlay MS (1995) Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J Histochem Cytochem: Off J Histochem Soc 43(4):447–457

    Article  CAS  Google Scholar 

  • Schmid R, Schiffner S, Opolka A, Grassel S, Schubert T, Moser M, Bosserhoff AK (2010) Enhanced cartilage regeneration in MIA/CD-RAP deficient mice. Cell Death Dis 1:e97. doi:10.1038/cddis.2010.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert T, Schlegel J, Schmid R, Opolka A, Grassel S, Humphries M, Bosserhoff AK (2010) Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP). Exp Mol Med 42(3):166–174. doi:10.3858/emm.2010.42.3.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254(1):116–130

    Article  CAS  PubMed  Google Scholar 

  • Shah JV (2010) Cells in tight spaces: the role of cell shape in cell function. J Cell Biol 191(2):233–236. doi:10.1083/jcb.201009048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakibaei M (1998) Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res 240(1):95–106. doi:10.1006/excr.1998.3933

    Article  CAS  PubMed  Google Scholar 

  • Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21(2):115–125. doi:10.1006/cbir.1996.0118

    Article  CAS  PubMed  Google Scholar 

  • Shekaran A, Shoemaker JT, Kavanaugh TE, Lin AS, LaPlaca MC, Fan Y, Guldberg RE, Garcia AJ (2014) The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone 68:131–141. doi:10.1016/j.bone.2014.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimaya M, Muneta T, Ichinose S, Tsuji K, Sekiya I (2010) Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthr Cartil/OARS Osteoarthritis Res Soc 18(10):1300–1309. doi:10.1016/j.joca.2010.06.005

    Article  CAS  Google Scholar 

  • Shioji S, Imai S, Ando K, Kumagai K, Matsusue Y (2014) Extracellular and intracellular mechanisms of mechanotransduction in three-dimensionally embedded rat chondrocytes. PLoS One 9(12):e114327. doi:10.1371/journal.pone.0114327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90(5):463–479. doi:10.1111/j.1365-2613.2009.00676.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnoli A, O’Rear L, Chandler RL, Granero-Molto F, Mortlock DP, Gorska AE, Weis JA, Longobardi L, Chytil A, Shimer K, Moses HL (2007) TGF-beta signaling is essential for joint morphogenesis. J Cell Biol 177(6):1105–1117. doi:10.1083/jcb.200611031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton H, Ung L, Fosang AJ (2002) The 45 kDa collagen-binding fragment of fibronectin induces matrix metalloproteinase-13 synthesis by chondrocytes and aggrecan degradation by aggrecanases. Biochem J 364(Pt 1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward AJ, Thorpe SD, Vinardell T, Buckley CT, Wagner DR, Kelly DJ (2012) Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomater 8(6):2153–2159. doi:10.1016/j.actbio.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  • Steward AJ, Wagner DR, Kelly DJ (2014) Exploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression. J Mech Behav Biomed Mater 38:174–182. doi:10.1016/j.jmbbm.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  • Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY (1997) Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386(6622):288–292. doi:10.1038/386288a0

    Article  CAS  PubMed  Google Scholar 

  • Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, Fassler R, Thiery JP, Glukhova MA (2008) Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 10(6):716–722. doi:10.1038/ncb1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M, Weaver VM, Keller ET, Goldstein S, Dai J, Begun D, Saunders T, Weiss SJ (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev Cell 25(4):402–416. doi:10.1016/j.devcel.2013.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terpstra L, Prud’homme J, Arabian A, Takeda S, Karsenty G, Dedhar S, St-Arnaud R (2003) Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J Cell Biol 162(1):139–148. doi:10.1083/jcb.200302066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi LL, Warman ML (2015) Mechanistic and therapeutic insights gained from studying rare skeletal diseases. Bone 76:67–75. doi:10.1016/j.bone.2015.03.016

    Article  PubMed  Google Scholar 

  • Tuckwell DS, Ayad S, Grant ME, Takigawa M, Humphries MJ (1994) Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge. J Cell Sci 107(Pt 4):993–1005

    CAS  PubMed  Google Scholar 

  • Varas L, Ohlsson LB, Honeth G, Olsson A, Bengtsson T, Wiberg C, Bockermann R, Jarnum S, Richter J, Pennington D, Johnstone B, Lundgren-Akerlund E, Kjellman C (2007) Alpha10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cells Dev 16(6):965–978. doi:10.1089/scd.2007.0049

    Article  CAS  PubMed  Google Scholar 

  • Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S (2002) Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277(40):37377–37381. doi:10.1074/jbc.M206286200

    Article  CAS  PubMed  Google Scholar 

  • Vincent TL (2013) Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 13(3):449–454. doi:10.1016/j.coph.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  • von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, Stoss H (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35(7):806–811

    Article  PubMed  Google Scholar 

  • Wang W, Kirsch T (2006) Annexin V/beta5 integrin interactions regulate apoptosis of growth plate chondrocytes. J Biol Chem 281(41):30848–30856. doi:10.1074/jbc.M605937200

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chan WC, Chan D (2016) Joint development. In: Grässel S, Aszódi A (eds) Cartilage, vol 1: Physiology and development. Springer International Publishing, Cham, pp 169–189. doi:10.1007/978-3-319-29568-8_7

  • Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968. doi:10.1002/ajmg.a.33909

    Article  PubMed  CAS  Google Scholar 

  • Wegener KL, Campbell ID (2008) Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (review). Mol Membr Biol 25(5):376–387. doi:10.1080/09687680802269886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109(2):877–889

    Article  CAS  PubMed  Google Scholar 

  • Wood ST, Long DL, Reisz JA, Yammani RR, Burke EA, Klomsiri C, Poole LB, Furdui CM, Loeser RF (2016) Cysteine-mediated redox regulation of cell signaling in chondrocytes stimulated with fibronectin fragments. Arthritis Rheumatol (Hoboken, NJ) 68(1):117–126. doi:10.1002/art.39326

    Article  CAS  Google Scholar 

  • Woods VL Jr, Schreck PJ, Gesink DS, Pacheco HO, Amiel D, Akeson WH, Lotz M (1994) Integrin expression by human articular chondrocytes. Arthritis Rheum 37(4):537–544

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Wang G, Beier F (2007) Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 213(1):1–8. doi:10.1002/jcp.21110

    Article  CAS  PubMed  Google Scholar 

  • Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, Jobanputra P, Nuki G, Salter DM (1997) Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res 15(5):742–747. doi:10.1002/jor.1100150517

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Billinghurst RC, Pidoux I, Antoniou J, Zukor D, Tanzer M, Poole AR (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 46(8):2087–2094. doi:10.1002/art.10428

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Servais J, Polur I, Kim D, Lee PL, Chung K, Li Y (2010) Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. Arthritis Rheum 62(9):2736–2744. doi:10.1002/art.27582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda T (2006) Cartilage destruction by matrix degradation products. Mod Rheumatol/Jpn Rheum Assoc 16(4):197–205. doi:10.1007/s10165-006-0490-6

    Article  CAS  Google Scholar 

  • Yeung Tsang K, Wa Tsang S, Chan D, Cheah KS (2014) The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Res C Embryo Today 102(1):52–73. doi:10.1002/bdrc.21060

    Article  PubMed  CAS  Google Scholar 

  • Zemmyo M, Meharra EJ, Kuhn K, Creighton-Achermann L, Lotz M (2003) Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthritis Rheum 48(10):2873–2880. doi:10.1002/art.11246

    Article  CAS  PubMed  Google Scholar 

  • Zhang LQ, Zhao GZ, Xu XY, Fang J, Chen JM, Li JW, Gao XJ, Hao LJ, Chen YZ (2015) Integrin-beta1 regulates chondrocyte proliferation and apoptosis through the upregulation of GIT1 expression. Int J Mol Med 35(4):1074–1080. doi:10.3892/ijmm.2015.2114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is supported by the DFG grants AS 150/11-1 (FOR2407) and AS 150/7-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Aszódi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aszódi, A. (2017). Integrin-Mediated Interactions in Cartilage Physiology and Pathophysiology. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-45803-8_8

Download citation

Publish with us

Policies and ethics