Skip to main content

Role of Proteoglycans in Osteoarthritis

  • Chapter
  • First Online:
Cartilage

Abstract

The articular cartilage covers the end of the long bones and ensures frictionless motion of the joints. Chondrocytes produce and maintain in a homeostatic equilibrium a large amount of extracellular matrix (ECM), thereby ensuring the cartilage function in locomotion and the absorption of biomechanical stress throughout life. To achieve this, chondrocytes are extremely sensitive to mechanical stress and injury signals and can rapidly adapt their metabolic activity ultimately ensuring that remodeling and repair of the tissue follow injury.

Proteoglycans as one of the main components of the ECM have diverse functions in the cartilage. They bind water and provide the basis for absorbing high compressive loads. Additionally, they bind cytokines, chemokines, growth factors, and morphogens, thereby protecting these factors against proteolysis and/or acting as a depot of regulatory factors when matrix degradation occurs. They also modulate signaling pathways and create morphogen gradients by immobilization of ligands in the ECM and regulation of the turnover of ligands. The extracellular domains of proteoglycans can be shed from the cell surface, generating soluble decoy receptors, and they can act as co-receptors for various tyrosine-kinase-type growth factor receptors. Furthermore, they can act as endocytic receptors and contribute to the clearance of bound ligands and cooperate with integrins and other cell adhesion receptors to facilitate cell attachment, cell–cell interactions, and cell motility.

Given these important roles of proteoglycans in regulating cell functions, it is well understandable that loss of ECM and degradation of proteoglycans during OA induce severe changes in cartilage homeostasis. The following review will discuss the role of different proteoglycans in the aforementioned processes with special emphasis on the role in osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23(3):354–358. doi:10.1038/15537

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27(4):431–434. doi:10.1038/86941

    Article  CAS  PubMed  Google Scholar 

  • Aspberg A (2016) Cartilage proteoglycans. In: Grässel S, Aszódi A (eds) Cartilage, vol 1, Physiology and development. Springer International Publishing, Cham, pp 1–22. doi:10.1007/978-3-319-29568-8_1

    Chapter  Google Scholar 

  • Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Grone HJ, Schaefer L (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284(36):24035–24048. doi:10.1074/jbc.M109.014266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ (2011) A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 21(4):681–693. doi:10.1016/j.devcel.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss MT, Howat S, Davidson C, Dudhia J (2000) The organization of aggrecan in human articular cartilage. Evidence for age-related changes in the rate of aggregation of newly synthesized molecules. J Biol Chem 275(9):6321–6327

    Article  CAS  PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777. doi:10.1146/annurev.biochem.68.1.729

    Article  CAS  PubMed  Google Scholar 

  • Bertrand J, Stange R, Hidding H, Echtermeyer F, Nalesso G, Godmann L, Timmen M, Bruckner P, Dell’Accio F, Raschke MJ, Pap T, Dreier R (2013) Syndecan 4 supports bone fracture repair, but not fetal skeletal development, in mice. Arthritis Rheum 65(3):743–752. doi:10.1002/art.37817

    Article  CAS  PubMed  Google Scholar 

  • Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4(4):295–308. doi:10.1038/nrm1074

    Article  CAS  PubMed  Google Scholar 

  • Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R, Miosge N (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 9(7):654–663. doi:10.1053/joca.2001.0420

    Article  CAS  Google Scholar 

  • Buckwalter JA, Lane NE (1997) Athletics and osteoarthritis. Am J Sports Med 25(6):873–881

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Rosenberg LC (1988) Electron microscopic studies of cartilage proteoglycans. Electron Microsc Rev 1(1):87–112

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54:465–480

    PubMed  Google Scholar 

  • Cattaruzza S, Schiappacassi M, Ljungberg-Rose A, Spessotto P, Perissinotto D, Morgelin M, Mucignat MT, Colombatti A, Perris R (2002) Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro. J Biol Chem 277(49):47626–47635. doi:10.1074/jbc.M206521200

    Article  CAS  PubMed  Google Scholar 

  • Chen XD, Fisher LW, Robey PG, Young MF (2004) The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J: Off Publ Fed Am Soc Exp Biol 18(9):948–958. doi:10.1096/fj.03-0899com

    Article  CAS  Google Scholar 

  • Choi HY, Dieckmann M, Herz J, Niemeier A (2009) Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 4(11):e7930. doi:10.1371/journal.pone.0007930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi Y, Chung H, Jung H, Couchman JR, Oh ES (2011) Syndecans as cell surface receptors: unique structure equates with functional diversity. Matrix Biol: J Int Soc Matrix Biol 30(2):93–99. doi:10.1016/j.matbio.2010.10.006

    Article  CAS  Google Scholar 

  • Corr M (2008) Wnt-beta-catenin signaling in the pathogenesis of osteoarthritis. Nat Clin Pract Rheumatol 4(10):550–556. doi:10.1038/ncprheum0904

    Article  CAS  PubMed  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147(5):1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4(12):926–937. doi:10.1038/nrm1257

    Article  CAS  PubMed  Google Scholar 

  • Couchman JR (2010) Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol 26:89–114. doi:10.1146/annurev-cellbio-100109-104126

    Article  CAS  PubMed  Google Scholar 

  • Cs-Szabo G, Melching LI, Roughley PJ, Glant TT (1997) Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. Arthritis Rheum 40(6):1037–1045. doi:10.1002/1529-0131(199706)40:6<1037::AID-ART6>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  • David G, Lories V, Decock B, Marynen P, Cassiman JJ, Van den Berghe H (1990) Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol 111(6 Pt 2):3165–3176

    Article  CAS  PubMed  Google Scholar 

  • David G, van der Schueren B, Marynen P, Cassiman JJ, van den Berghe H (1992) Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J Cell Biol 118(4):961–969

    Article  CAS  PubMed  Google Scholar 

  • De Cat B, Muyldermans SY, Coomans C, Degeest G, Vanderschueren B, Creemers J, Biemar F, Peers B, David G (2003) Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 163(3):625–635. doi:10.1083/jcb.200302152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421. doi:10.1002/art.23444

    Article  PubMed  CAS  Google Scholar 

  • Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA (1997) Agrin binds to the nerve-muscle basal lamina via laminin. J Cell Biol 137(3):671–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denzer AJ, Schulthess T, Fauser C, Schumacher B, Kammerer RA, Engel J, Ruegg MA (1998) Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J 17(2):335–343. doi:10.1093/emboj/17.2.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G, Pap T (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15(9):1072–1076. doi:10.1038/nm.1998

    Article  CAS  PubMed  Google Scholar 

  • Eldridge S, Nalesso G, Ismail H, Vicente-Greco K, Kabouridis P, Ramachandran M, Niemeier A, Herz J, Pitzalis C, Perretti M, Dell’Accio F (2015) Agrin mediates chondrocyte homeostasis and requires both LRP4 and alpha-dystroglycan to enhance cartilage formation in vitro and in vivo. Ann Rheum Dis 75:1228–1235. doi:10.1136/annrheumdis-2015-207316

    Article  PubMed  PubMed Central  Google Scholar 

  • Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA, Oldberg A, Bi Y, Young MF (2010) Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. Am J Pathol 176(2):812–826. doi:10.2353/ajpath.2010.090450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esko JD, Linhardt RJ (2009) Proteins that bind sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Filion RJ, Popel AS (2004) A reaction-diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann Biomed Eng 32(5):645–663

    Article  PubMed  Google Scholar 

  • Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L (2013) Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J 280(10):2165–2179. doi:10.1111/febs.12145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerer C, Habib SJ, Nusse R (2010) A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev Dyn: Off Publ Am Assoc Anatomists 239(1):184–190. doi:10.1002/dvdy.22067

    CAS  Google Scholar 

  • Garciadiego-Cazares D, Aguirre-Sanchez HI, Abarca-Buis RF, Kouri JB, Velasquillo C, Ibarra C (2015) Regulation of alpha5 and alphaV integrin expression by GDF-5 and BMP-7 in chondrocyte differentiation and osteoarthritis. PLoS One 10(5):e0127166. doi:10.1371/journal.pone.0127166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giedion A, Boltshauser E, Briner J, Eich G, Exner G, Fendel H, Kaufmann L, Steinmann B, Spranger J, Superti-Furga A (1997) Heterogeneity in Schwartz-Jampel chondrodystrophic myotonia. Eur J Pediatr 156(3):214–223

    Article  CAS  PubMed  Google Scholar 

  • Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648. doi:10.1038/nature03369

    Article  CAS  PubMed  Google Scholar 

  • Goldoni S, Iozzo RV (2008) Tumor microenvironment: modulation by decorin and related molecules harboring leucine-rich tandem motifs. Int J of Cancer J Int Cancer 123(11):2473–2479. doi:10.1002/ijc.23930

    Article  CAS  Google Scholar 

  • Gronau T, Kruger K, Prein C, Aszodi A, Gronau I, Iozzo RV, Mooren FC, Clausen-Schaumann H, Bertrand J, Pap T, Bruckner P, Dreier R (2016) Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-rich proteoglycan decorin. Ann Rheum Dis. 2016 Jul 4. pii: annrheumdis-2016-209319. doi: 10.1136/annrheumdis-2016-209319.

  • Grover J, Roughley PJ (1995) Expression of cell-surface proteoglycan mRNA by human articular chondrocytes. Biochem J 309(Pt 3):963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Liu J, Ma MJ, Zhao L (2005) Clinicopathological significance of heparanase and basic fibroblast growth factor expression in human esophageal cancer. World J Gastroenterol: WJG 11(14):2188–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann C (2016) Wnt signaling in cartilage development. In: Grässel S, Aszódi A (eds) Cartilage, vol 1, Physiology and development. Springer International Publishing, Cham, pp 229–252. doi:10.1007/978-3-319-29568-8_10

    Chapter  Google Scholar 

  • Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR (1980) Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A 77(8):4494–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausser HJ, Ruegg MA, Brenner RE, Ksiazek I (2007) Agrin is highly expressed by chondrocytes and is required for normal growth. Histochem Cell Biol 127(4):363–374. doi:10.1007/s00418-006-0258-2

    Article  CAS  PubMed  Google Scholar 

  • Heard BJ, Solbak NM, Achari Y, Chung M, Hart DA, Shrive NG, Frank CB (2013) Changes of early post-traumatic osteoarthritis in an ovine model of simulated ACL reconstruction are associated with transient acute post-injury synovial inflammation and tissue catabolism. Osteoarthr Cartil/OARS Osteoarthr Res Soc 21(12):1942–1949. doi:10.1016/j.joca.2013.08.019

    Article  CAS  Google Scholar 

  • Hedlund H, Mengarelli-Widholm S, Heinegard D, Reinholt FP, Svensson O (1994) Fibromodulin distribution and association with collagen. Matrix Biol: J Int Soc Matrix Biol 14(3):227–232

    Article  CAS  Google Scholar 

  • Henry SP, Takanosu M, Boyd TC, Mayne PM, Eberspaecher H, Zhou W, de Crombrugghe B, Hook M, Mayne R (2001) Expression pattern and gene characterization of asporin. a newly discovered member of the leucine-rich repeat protein family. J Biol Chem 276(15):12212–12221. doi:10.1074/jbc.M011290200

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(Pt 2):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries MJ, Mostafavi-Pour Z, Morgan MR, Deakin NO, Messent AJ, Bass MD (2005) Integrin-syndecan cooperation governs the assembly of signalling complexes during cell spreading. Novartis Found Symp 269:178–188; discussion 188–192, 223–130

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (1999) The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274(27):18843–18846

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355. doi:10.1172/JCI13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iozzo RV, Sanderson RD (2011) Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 15(5):1013–1031. doi:10.1111/j.1582-4934.2010.01236.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, Oldberg A, Birk DE, Chakravarti S (2002) A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 277(38):35532–35540. doi:10.1074/jbc.M205398200

    Article  CAS  PubMed  Google Scholar 

  • Kalamajski S, Aspberg A, Oldberg A (2007) The decorin sequence SYIRIADTNIT binds collagen type I. J Biol Chem 282(22):16062–16067. doi:10.1074/jbc.M700073200

    Article  CAS  PubMed  Google Scholar 

  • Kalamajski S, Aspberg A, Lindblom K, Heinegard D, Oldberg A (2009) Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization. Biochem J 423(1):53–59. doi:10.1042/BJ20090542

    Article  CAS  PubMed  Google Scholar 

  • Kaneko H, Ishijima M, Futami I, Tomikawa-Ichikawa N, Kosaki K, Sadatsuki R, Yamada Y, Kurosawa H, Kaneko K, Arikawa-Hirasawa E (2013) Synovial perlecan is required for osteophyte formation in knee osteoarthritis. Matrix Biol: J Int Soc Matrix Biol 32(3-4):178–187. doi:10.1016/j.matbio.2013.01.004

    Article  CAS  Google Scholar 

  • Kim CW, Goldberger OA, Gallo RL, Bernfield M (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5(7):797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S, Uchida A, Nakamura K, Notoya K, Nakamura Y, Ikegawa S (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37(2):138–144. doi:10.1038/ng1496

    Article  CAS  PubMed  Google Scholar 

  • Lees S, Golub SB, Last K, Zeng W, Jackson DC, Sutton P, Fosang AJ (2015) Bioactivity in an aggrecan 32-mer fragment is mediated via toll-like receptor 2. Arthritis Rheumatol 67(5):1240–1249. doi:10.1002/art.39063

    Article  CAS  PubMed  Google Scholar 

  • Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11(1):35–44. doi:10.1038/nrrheum.2014.162

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo P, Aspberg A, Onnerfjord P, Bayliss MT, Neame PJ, Heinegard D (2001) Identification and characterization of asporin. a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem 276(15):12201–12211. doi:10.1074/jbc.M010932200

    Article  CAS  PubMed  Google Scholar 

  • Luyten FP, Tylzanowski P, Lories RJ (2009) Wnt signaling and osteoarthritis. Bone 44(4):522–527. doi:10.1016/j.bone.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  • Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22(2):351–384. doi:10.1016/j.berh.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M (2001) Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthr Cartil/OARS Osteoarthr Res Soc 9(2):112–118. doi:10.1053/joca.2000.0366

    Article  CAS  Google Scholar 

  • McCulloch DR, Nelson CM, Dixon LJ, Silver DL, Wylie JD, Lindner V, Sasaki T, Cooley MA, Argraves WS, Apte SS (2009) ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression. Dev Cell 17(5):687–698. doi:10.1016/j.devcel.2009.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melrose J, Tammi M, Smith S (2002) Visualisation of hyaluronan and hyaluronan-binding proteins within ovine vertebral cartilages using biotinylated aggrecan G1-link complex and biotinylated hyaluronan oligosaccharides. Histochem Cell Biol 117(4):327–333. doi:10.1007/s00418-002-0392-4

    Article  CAS  PubMed  Google Scholar 

  • Mochida Y, Parisuthiman D, Yamauchi M (2006) Biglycan is a positive modulator of BMP-2 induced osteoblast differentiation. Adv Exp Med Biol 585:101–113

    Article  CAS  PubMed  Google Scholar 

  • Mort JS, Geng Y, Fisher WD, Roughley PJ (2016) Aggrecan heterogeneity in articular cartilage from patients with osteoarthritis. BMC Musculoskelet Disord 17:89. doi:10.1186/s12891-016-0944-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13(2):67–97

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5(2):94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima M, Kizawa H, Saitoh M, Kou I, Miyazono K, Ikegawa S (2007) Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem 282(44):32185–32192. doi:10.1074/jbc.M700522200

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Shinomura T, Iwata H, Miura T, Kimata K (1994) Abnormal occurrence of a large chondroitin sulfate proteoglycan, PG-M/versican in osteoarthritic cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 2(1):43–49

    Article  CAS  Google Scholar 

  • Oegema TR Jr (1980) Delayed formation of proteoglycan aggregate structures in human articular cartilage disease states. Nature 288(5791):583–585

    Article  CAS  PubMed  Google Scholar 

  • Ohazama A, Johnson EB, Ota MS, Choi HY, Porntaveetus T, Oommen S, Itoh N, Eto K, Gritli-Linde A, Herz J, Sharpe PT (2008) Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 3(12):e4092. doi:10.1371/journal.pone.0004092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohkawara B, Yamamoto TS, Tada M, Ueno N (2003) Role of glypican 4 in the regulation of convergent extension movements during gastrulation in xenopus laevis. Development 130(10):2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Pap T, Bertrand J (2013) Syndecans in cartilage breakdown and synovial inflammation. Nat Rev Rheumatol 9(1):43–55. doi:10.1038/nrrheum.2012.178

    Article  CAS  PubMed  Google Scholar 

  • Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12(3):241–247. doi:10.1038/ng0396-241

    Article  CAS  PubMed  Google Scholar 

  • Poole AR, Rosenberg LC, Reiner A, Ionescu M, Bogoch E, Roughley PJ (1996) Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J Orthop Res 14(5):681–689. doi:10.1002/jor.1100140502

    Article  CAS  PubMed  Google Scholar 

  • Radwan M, Gavriilidis C, Robinson JH, Davidson R, Clark IM, Rowan AD, Young DA (2013) Matrix metalloproteinase 13 expression in response to double-stranded RNA in human chondrocytes. Arthritis Rheum 65(5):1290–1301. doi:10.1002/art.37868

    Article  CAS  PubMed  Google Scholar 

  • Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252(5013):1705–1708

    Article  CAS  PubMed  Google Scholar 

  • Reichsman F, Smith L, Cumberledge S (1996) Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol 135(3):819–827

    Article  CAS  PubMed  Google Scholar 

  • Reynard LN, Loughlin J (2013) The genetics and functional analysis of primary osteoarthritis susceptibility. Expert Rev Mol Med 15:e2. doi:10.1017/erm.2013.4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roughley PJ, Mort JS (2014) The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 1(1):8. doi:10.1186/s40634-014-0008-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppert R, Hoffmann E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem/FEBS 237(1):295–302

    Article  CAS  Google Scholar 

  • Sadatsuki R, Kaneko H, Kinoshita M, Futami I, Nonaka R, Culley KL, Otero M, Hada S, Goldring MB, Yamada Y, Kaneko K, Arikawa-Hirasawa E, Ishijima M (2016) Perlecan is required for the chondrogenic differentiation of synovial mesenchymal cells through regulation of Sox9 gene expression. J Orthop Res: Off Publ Orthop Res Soc. doi:10.1002/jor.23318

    Google Scholar 

  • Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C (1999) FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 13(11):1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M, Marsche G, Young MF, Mihalik D, Gotte M, Malle E, Schaefer RM, Grone HJ (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115(8):2223–2233. doi:10.1172/JCI23755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz NB, Pirok EW 3rd, Mensch JR Jr, Domowicz MS (1999) Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family. Prog Nucleic Acid Res Mol Biol 62:177–225

    Article  CAS  PubMed  Google Scholar 

  • Sherwood J, Bertrand J, Nalesso G, Poulet B, Pitsillides A, Brandolini L, Karystinou A, De Bari C, Luyten FP, Pitzalis C, Pap T, Dell’Accio F (2015) A homeostatic function of CXCR2 signalling in articular cartilage. Ann Rheum Dis 74(12):2207–2215. doi:10.1136/annrheumdis-2014-205546

    Article  CAS  PubMed  Google Scholar 

  • Shu CC, Jackson MT, Smith MM, Smith SM, Penm S, Lord MS, Whitelock JM, Little CB, Melrose J (2016) Ablation of perlecan domain 1 heparan sulfate reduces progressive cartilage degradation, synovitis, and osteophyte size in a preclinical model of posttraumatic osteoarthritis. Arthritis Rheumatol 68(4):868–879. doi:10.1002/art.39529

    Article  CAS  PubMed  Google Scholar 

  • Sillat T, Barreto G, Clarijs P, Soininen A, Ainola M, Pajarinen J, Korhonen M, Konttinen YT, Sakalyte R, Hukkanen M, Ylinen P, Nordstrom DC (2013) Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop 84(6):585–592. doi:10.3109/17453674.2013.854666

    Article  PubMed  PubMed Central  Google Scholar 

  • Song HH, Shi W, Xiang YY, Filmus J (2005) The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem 280(3):2116–2125. doi:10.1074/jbc.M410090200

    Article  CAS  PubMed  Google Scholar 

  • Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434(7033):648–652. doi:10.1038/nature03417

    Article  CAS  PubMed  Google Scholar 

  • Su SL, Tsai CD, Lee CH, Salter DM, Lee HS (2005) Expression and regulation of Toll-like receptor 2 by IL-1beta and fibronectin fragments in human articular chondrocytes. Osteoarthr Cartil/OARS Osteoarthr Res Soc 13(10):879–886. doi:10.1016/j.joca.2005.04.017

    Article  Google Scholar 

  • SundarRaj N, Fite D, Ledbetter S, Chakravarti S, Hassell JR (1995) Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J Cell Sci 108(Pt 7):2663–2672

    CAS  PubMed  Google Scholar 

  • Svensson L, Heinegard D, Oldberg A (1995) Decorin-binding sites for collagen type I are mainly located in leucine-rich repeats 4-5. J Biol Chem 270(35):20712–20716

    Article  CAS  PubMed  Google Scholar 

  • Sztrolovics R, White RJ, Poole AR, Mort JS, Roughley PJ (1999) Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem J 339(Pt 3):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Ogasawara T, Kishimoto J, Liu G, Asato H, Nakatsuka T, Uchinuma E, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2005) Synergistic effects of FGF-2 with insulin or IGF-I on the proliferation of human auricular chondrocytes. Cell Transplant 14(9):683–693

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Kodama Y, Matsumoto T (1994) Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269(51):32634–32638

    CAS  PubMed  Google Scholar 

  • Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr Cartil/OARS Osteoarthr Res Soc 12(11):852–862. doi:10.1016/j.joca.2004.07.004

    Article  CAS  Google Scholar 

  • Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96(5):488–500. doi:10.1161/01.RES.0000159708.71142.c8

    Article  CAS  PubMed  Google Scholar 

  • Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824(1):133–145. doi:10.1016/j.bbapap.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  • Tufvesson E, Westergren-Thorsson G (2002) Tumour necrosis factor-alpha interacts with biglycan and decorin. FEBS Lett 530(1-3):124–128

    Article  CAS  PubMed  Google Scholar 

  • Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS (2000) Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 275(6):4374–4382

    Article  CAS  PubMed  Google Scholar 

  • van der Kraan PM, Blaney Davidson EN, van den Berg WB (2010) Bone morphogenetic proteins and articular cartilage: to serve and protect or a wolf in sheep clothing’s? osteoarthritis and cartilage / OARS. Osteoarthr Res Soc 18(6):735–741. doi:10.1016/j.joca.2010.03.001

    Article  Google Scholar 

  • Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J (2007) FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthr Cartil/OARS Osteoarthr Res Soc 15(7):752–763. doi:10.1016/j.joca.2007.01.021

    Article  CAS  Google Scholar 

  • Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV (2011) TNF-alpha and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem 286(46):39738–39749. doi:10.1074/jbc.M111.264549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem 124(4):687–693

    Article  CAS  PubMed  Google Scholar 

  • Westling J, Gottschall PE, Thompson VP, Cockburn A, Perides G, Zimmermann DR, Sandy JD (2004) ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein. Biochem J 377(Pt 3):787–795. doi:10.1042/BJ20030896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105(7):2745–2764. doi:10.1021/cr010213m

    Article  CAS  PubMed  Google Scholar 

  • Wight TN, Kang I, Merrilees MJ (2014) Versican and the control of inflammation. Matrix Biol: J Int Soc Matrix Biol 35:152–161. doi:10.1016/j.matbio.2014.01.015

    Article  CAS  Google Scholar 

  • Wu Y, Chen L, Zheng PS, Yang BB (2002) Beta 1-Integrin-mediated glioma cell adhesion and free radical-induced apoptosis are regulated by binding to a C-terminal domain of PG-M/versican. J Biol Chem 277(14):12294–12301. doi:10.1074/jbc.M110748200

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20(1):78–82. doi:10.1038/1746

    Article  CAS  PubMed  Google Scholar 

  • Yang BL, Zhang Y, Cao L, Yang BB (1999) Cell adhesion and proliferation mediated through the G1 domain of versican. J Cell Biochem 72(2):210–220

    Article  CAS  PubMed  Google Scholar 

  • Young AA, Smith MM, Smith SM, Cake MA, Ghosh P, Read RA, Melrose J, Sonnabend DH, Roughley PJ, Little CB (2005) Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res Ther 7(4):R852–R861. doi:10.1186/ar1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann DR, Ruoslahti E (1989) Multiple domains of the large fibroblast proteoglycan, versican. EMBO J 8(10):2975–2981

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Bertrand PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bertrand, J., Held, A. (2017). Role of Proteoglycans in Osteoarthritis. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-45803-8_4

Download citation

Publish with us

Policies and ethics