Cartilage pp 27-40 | Cite as

Cartilage Injury and Osteoarthritis

  • Heba M. Ismail
  • Tonia L. VincentEmail author


Mechanical stress is an obligatory aetiological factor in the development of OA so understanding how tissues of the joint respond to mechanical injury is likely to inform our understanding of pathogenesis. Much is known about how vascular tissues respond to damage, a process that involves activation of platelets on the exposed endothelium and recruitment of leukocytes to the site of injury. The articular cartilage is avascular yet responds rapidly and strongly to a range of mechanical stresses including cutting, avulsion, impact loading and shearing. It does so by activating a number of mechanosensitive pathways mediated by release of molecules trapped within the pericellular matrix as well as by triggering mechanoreceptors at the cell surface. In this way injury drives a number of intracellular signalling pathways, leading to a broad range of cellular responses. These pathways appear to be relevant to the in vivo response to mechanical disruption and affect the course of experimental OA.


Articular Cartilage Focal Adhesion Kinase Mechanical Injury Extracellularly Regulate Kinase Cartilage Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, Vega-Lopez MA, Lavalle C, Kouri JB (2010) Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of osteoarthritis within an experimental model. Apoptosis: Int J Program Cell Death 15(5):631–638. doi: 10.1007/s10495-010-0458-z CrossRefGoogle Scholar
  2. Appleton CT, Pitelka V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56(6):1854–1868. doi: 10.1002/art.22711 CrossRefPubMedGoogle Scholar
  3. Aspden RM, Jeffrey JE, Burgin LV (2002) Impact loading of articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 10(7):588–589; author reply 590CrossRefGoogle Scholar
  4. Bartell LR, Fortier LA, Bonassar LJ, Cohen I (2015) Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J Biomech. doi: 10.1016/j.jbiomech.2015.05.035 PubMedPubMedCentralGoogle Scholar
  5. Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007a) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3(3):207–214CrossRefPubMedGoogle Scholar
  6. Bohensky J, Shapiro IM, Leshinsky S, Watanabe H, Srinivas V (2007b) PIM-2 is an independent regulator of chondrocyte survival and autophagy in the epiphyseal growth plate. J Cell Physiol 213(1):246–251. doi: 10.1002/jcp.21117 CrossRefPubMedGoogle Scholar
  7. Brandt KD, Dieppe P, Radin EL (2009) Commentary: is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin Arthritis Rheum 39(2):81–95. doi: 10.1016/j.semarthrit.2009.06.001 CrossRefPubMedGoogle Scholar
  8. Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL (2012) Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum 64(7):2278–2288. doi: 10.1002/art.34420 CrossRefPubMedGoogle Scholar
  9. Campbell CJ (1969) The healing of cartilage defects. Clin Orthop Relat Res 64:45–63PubMedGoogle Scholar
  10. Carames B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M (2012) Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum 64(4):1182–1192. doi: 10.1002/art.33444 CrossRefPubMedGoogle Scholar
  11. Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 305(12):C1202–C1208. doi: 10.1152/ajpcell.00242.2013 CrossRefPubMedGoogle Scholar
  12. Chong KW, Chanalaris A, Burleigh A, Jin H, Watt FE, Saklatvala J, Vincent TL (2013) Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and in vivo. Arthritis Rheum 65(9):2346–2355. doi: 10.1002/art.38039 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chowdhury TT, Salter DM, Bader DL, Lee DA (2008) Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflamm Res: Off J Eur Histamine Res Soc [et al] 57(7):306–313. doi: 10.1007/s00011-007-7126-y CrossRefGoogle Scholar
  14. Christiansen BA, Guilak F, Lockwood KA, Olson SA, Pitsillides AA, Sandell LJ, Silva MJ, van der Meulen MC, Haudenschild DR (2015) Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 23(10):1627–1638. doi: 10.1016/j.joca.2015.05.009 CrossRefGoogle Scholar
  15. Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62(10):2973–2983. doi: 10.1002/art.27624 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Costouros JG, Kim HT (2007) Preventing chondrocyte programmed cell death caused by iatrogenic injury. Knee 14(2):107–111. doi: 10.1016/j.knee.2006.10.013 CrossRefPubMedGoogle Scholar
  17. D’Lima D, Hermida J, Hashimoto S, Colwell C, Lotz M (2006) Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 54(6):1814–1821. doi: 10.1002/art.21874 CrossRefPubMedGoogle Scholar
  18. Dang AC, Warren AP, Kim HT (2006) Beneficial effects of intra-articular caspase inhibition therapy following osteochondral injury. Osteoarthr Cartil/OARS Osteoarthr Res Soc 14(6):526–532. doi: 10.1016/j.joca.2005.12.010 CrossRefGoogle Scholar
  19. Dell’Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O’Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8(5):R139. doi: 10.1186/ar2029 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421. doi: 10.1002/art.23444 CrossRefPubMedGoogle Scholar
  21. DiMicco MA, Patwari P, Siparsky PN, Kumar S, Pratta MA, Lark MW, Kim YJ, Grodzinsky AJ (2004) Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. Arthritis Rheum 50(3):840–848. doi: 10.1002/art.20101 CrossRefPubMedGoogle Scholar
  22. Ding L, Guo D, Homandberg GA (2008) The cartilage chondrolytic mechanism of fibronectin fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthr Cartil/OARS Osteoarthr Res Soc 16(10):1253–1262. doi: 10.1016/j.joca.2008.02.015 CrossRefGoogle Scholar
  23. Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Buckwalter JA, Guo D, Martin JA (2010) Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthr Cartil/OARS Osteoarthr Res Soc 18(11):1509–1517. doi: 10.1016/j.joca.2010.08.014 CrossRefGoogle Scholar
  24. Eltawil NM, De Bari C, Achan P, Pitzalis C, Dell’accio F (2009) A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthr Cartil/OARS Osteoarthr Res Soc 17(6):695–704. doi: 10.1016/j.joca.2008.11.003 CrossRefGoogle Scholar
  25. Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, Kurisu K, Suzuki F (1997) Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Min Res: Off J Am Soc Bone Min Res 12(7):1124–1132. doi: 10.1359/jbmr.1997.12.7.1124 CrossRefGoogle Scholar
  26. Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, et al. (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278:50940–50948. doi:  10.1074/jbc.m305107200
  27. Fitzgerald JB, Jin M, Chai DH, Siparsky P, Fanning P, Grodzinsky AJ (2008) Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J Biol Chem 283(11):6735–6743. doi: 10.1074/jbc.M708670200 CrossRefPubMedGoogle Scholar
  28. Gardiner MD, Vincent TL, Driscoll C, Burleigh A, Bou-Gharios G, Saklatvala J, Nagase H, Chanalaris A (2015) Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 23(4):616–628. doi: 10.1016/j.joca.2014.12.014 CrossRefGoogle Scholar
  29. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648. doi: 10.1038/nature03369 CrossRefPubMedGoogle Scholar
  30. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, Martin JA (2010) Rotenone prevents impact-induced chondrocyte death. J Orthop Res: Off Publ Orthop Res Soc 28(8):1057–1063. doi: 10.1002/jor.21091 Google Scholar
  31. Gruber J, Vincent TL, Hermansson M, Bolton M, Wait R, Saklatvala J (2004) Induction of interleukin-1 in articular cartilage by explantation and cutting. Arthritis Rheum 50(8):2539–2546. doi: 10.1002/art.20369 CrossRefPubMedGoogle Scholar
  32. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, Setton LA, Haider MA (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci 1068:498–512. doi: 10.1196/annals.1346.011 CrossRefPubMedGoogle Scholar
  33. Guo D, Ding L, Homandberg GA (2009) Telopeptides of type II collagen upregulate proteinases and damage cartilage but are less effective than highly active fibronectin fragments. Inflamm Res: Off J Eur Histamine Res Soc [et al] 58(3):161–169. doi: 10.1007/s00011-009-8090-5 CrossRefGoogle Scholar
  34. Han SK, Wouters W, Clark A, Herzog W (2012) Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res: Off Publ Orthop Res Soc 30(3):475–481. doi: 10.1002/jor.21536 CrossRefGoogle Scholar
  35. Huveneers S, Danen EH (2009) Adhesion signaling – crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi: 10.1242/jcs.039446 CrossRefPubMedGoogle Scholar
  36. Jang KW, Buckwalter JA, Martin JA (2014) Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res: Off Publ Orthop Res Soc 32(3):448–454. doi: 10.1002/jor.22523 CrossRefGoogle Scholar
  37. Killian ML, Haut RC, Haut Donahue TL (2014) Acute cell viability and nitric oxide release in lateral menisci following closed-joint knee injury in a lapine model of post-traumatic osteoarthritis. BMC Musculoskelet Disord 15:297. doi: 10.1186/1471-2474-15-297 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kuhn K, D’Lima DD, Hashimoto S, Lotz M (2004) Cell death in cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 12(1):1–16CrossRefGoogle Scholar
  39. Kvist AJ, Nystrom A, Hultenby K, Sasaki T, Talts JF, Aspberg A (2008) The major basement membrane components localize to the chondrocyte pericellular matrix – a cartilage basement membrane equivalent? Matrix Biol: J Int Soc Matrix Biol 27(1):22–33. doi: 10.1016/j.matbio.2007.07.007 CrossRefGoogle Scholar
  40. Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52(8):2386–2395. doi: 10.1002/art.21215 CrossRefPubMedGoogle Scholar
  41. Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, Grandl J, Sachs F, Guilak F, Liedtke WB (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111(47):E5114–E5122. doi: 10.1073/pnas.1414298111 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60(12):3723–3733. doi: 10.1002/art.25002 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Madej W, van Caam A, Blaney Davidson EN, Hannink G, Buma P, van der Kraan PM (2016) Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 24(1):146–157. doi: 10.1016/j.joca.2015.07.018 CrossRefGoogle Scholar
  44. Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO (2009) N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 91(8):1890–1897. doi: 10.2106/JBJS.H.00545 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Meachim G (1963) The effect of scarification on articular cartilage in the rabbit. J Bone Joint Surg Br 45B:150–161Google Scholar
  46. Namdari S, Wei L, Moore D, Chen Q (2008) Reduced limb length and worsened osteoarthritis in adult mice after genetic inhibition of p38 MAP kinase activity in cartilage. Arthritis Rheum 58(11):3520–3529. doi: 10.1002/art.23999 CrossRefPubMedPubMedCentralGoogle Scholar
  47. O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111(4):1316–1321. doi: 10.1073/pnas.1319569111 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Palmoski M, Perricone E, Brandt KD (1979) Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 22(5):508–517. doi: 10.1002/Art.1780220511 CrossRefPubMedGoogle Scholar
  49. Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60(10):3028–3037. doi: 10.1002/art.24799 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA (2011) Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 63(1):137–147. doi: 10.1002/art.27765 CrossRefPubMedGoogle Scholar
  51. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583PubMedGoogle Scholar
  52. Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, Cheverud JM, Sandell LJ (2012) Heritability of articular cartilage regeneration and its association with ear wound healing in mice. Arthritis Rheum 64(7):2300–2310. doi: 10.1002/art.34396 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Redman SN, Dowthwaite GP, Thomson BM, Archer CW (2004) The cellular responses of articular cartilage to sharp and blunt trauma. Osteoarthr Cartil 12(2):106–116. doi: 10.1016/J.Joca.2002.12.001 CrossRefPubMedGoogle Scholar
  54. Redman SN, Khan IM, Tew SR, Archer CW (2007) In situ detection of cell death in articular cartilage. Methods Mol Med 135:183–199CrossRefPubMedGoogle Scholar
  55. Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis: Int J Program Cell Death 9(3):265–277CrossRefGoogle Scholar
  56. Rosenzweig DH, Djap MJ, Ou SJ, Quinn TM (2012) Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 20(12):1591–1602. doi: 10.1016/j.joca.2012.08.012 CrossRefGoogle Scholar
  57. Salter DM, Millward-Sadler SJ, Nuki G, Wright MO (2002) Differential responses of chondrocytes from normal and osteoarthritic human articular cartilage to mechanical stimulation. Biorheology 39(1–2):97–108PubMedGoogle Scholar
  58. Sauter E, Buckwalter JA, McKinley TO, Martin JA (2012) Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res: Off Publ Orthop Res Soc 30(4):593–598. doi: 10.1002/jor.21552 CrossRefGoogle Scholar
  59. Seror J, Zhu L, Goldberg R, Day AJ, Klein J (2015) Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6:6497. doi: 10.1038/ncomms7497 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Soder S, Hambach L, Lissner R, Kirchner T, Aigner T (2002) Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 10(6):464–470. doi: 10.1053/joca.2002.0512 CrossRefGoogle Scholar
  61. Stockwell RA (1978) Chondrocytes. J Clin Pathol Suppl 12:7–13CrossRefGoogle Scholar
  62. Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr Cartil/OARS Osteoarthr Res Soc 12(11):852–862. doi: 10.1016/j.joca.2004.07.004 CrossRefGoogle Scholar
  63. Tew SR, Kwan AP, Hann A, Thomson BM, Archer CW (2000) The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 43(1):215–225. doi: 10.1002/1529-0131(200001)43:1<215::AID-ANR26>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  64. Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46(8):2073–2078. doi: 10.1002/art.10462 CrossRefPubMedGoogle Scholar
  65. Vinall RL, Lo SH, Reddi AH (2002) Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res 272(1):32–44. doi: 10.1006/excr.2001.5395 CrossRefPubMedGoogle Scholar
  66. Vincent T, Hermansson M, Bolton M, Wait R, Saklatvala J (2002) Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc Natl Acad Sci U S A 99(12):8259–8264. doi: 10.1073/pnas.122033199 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vincent TL, Hermansson MA, Hansen UN, Amis AA, Saklatvala J (2004) Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. Arthritis Rheum 50(2):526–533. doi: 10.1002/Art.20047 CrossRefPubMedGoogle Scholar
  68. Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J (2007) FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthr Cartil 15(7):752–763. doi: 10.1016/j.joca.2007.01.021 CrossRefPubMedGoogle Scholar
  69. Vincent TL, Williams RO, Maciewicz R, Silman A, Garside P, Working ARUAM (2012) Mapping pathogenesis of arthritis through small animal models. Rheumatology 51(11):1931–1941. doi: 10.1093/rheumatology/kes035 CrossRefPubMedGoogle Scholar
  70. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD (2013) Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A 110(15):5852–5857. doi: 10.1073/pnas.1219289110 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260(5111):1124–1127. doi: 10.1126/Science.7684161 CrossRefPubMedGoogle Scholar
  72. Watt FE, Ismail HM, Didangelos A, Peirce M, Vincent TL, Wait R, Saklatvala J (2013) Src and fibroblast growth factor 2 independently regulate signaling and gene expression induced by experimental injury to intact articular cartilage. Arthritis Rheum 65(2):397–407. doi: 10.1002/art.37765 CrossRefPubMedGoogle Scholar
  73. Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci 90(1):61–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, NDORMSUniversity of OxfordOxfordUK

Personalised recommendations