Skip to main content

Cartilage Injury and Osteoarthritis

  • Chapter
  • First Online:
Cartilage

Abstract

Mechanical stress is an obligatory aetiological factor in the development of OA so understanding how tissues of the joint respond to mechanical injury is likely to inform our understanding of pathogenesis. Much is known about how vascular tissues respond to damage, a process that involves activation of platelets on the exposed endothelium and recruitment of leukocytes to the site of injury. The articular cartilage is avascular yet responds rapidly and strongly to a range of mechanical stresses including cutting, avulsion, impact loading and shearing. It does so by activating a number of mechanosensitive pathways mediated by release of molecules trapped within the pericellular matrix as well as by triggering mechanoreceptors at the cell surface. In this way injury drives a number of intracellular signalling pathways, leading to a broad range of cellular responses. These pathways appear to be relevant to the in vivo response to mechanical disruption and affect the course of experimental OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, Vega-Lopez MA, Lavalle C, Kouri JB (2010) Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of osteoarthritis within an experimental model. Apoptosis: Int J Program Cell Death 15(5):631–638. doi:10.1007/s10495-010-0458-z

    Article  CAS  Google Scholar 

  • Appleton CT, Pitelka V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56(6):1854–1868. doi:10.1002/art.22711

    Article  CAS  PubMed  Google Scholar 

  • Aspden RM, Jeffrey JE, Burgin LV (2002) Impact loading of articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 10(7):588–589; author reply 590

    Article  CAS  Google Scholar 

  • Bartell LR, Fortier LA, Bonassar LJ, Cohen I (2015) Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J Biomech. doi:10.1016/j.jbiomech.2015.05.035

    PubMed  PubMed Central  Google Scholar 

  • Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V (2007a) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Bohensky J, Shapiro IM, Leshinsky S, Watanabe H, Srinivas V (2007b) PIM-2 is an independent regulator of chondrocyte survival and autophagy in the epiphyseal growth plate. J Cell Physiol 213(1):246–251. doi:10.1002/jcp.21117

    Article  CAS  PubMed  Google Scholar 

  • Brandt KD, Dieppe P, Radin EL (2009) Commentary: is it useful to subset “primary” osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin Arthritis Rheum 39(2):81–95. doi:10.1016/j.semarthrit.2009.06.001

    Article  PubMed  Google Scholar 

  • Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, Vincent TL (2012) Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum 64(7):2278–2288. doi:10.1002/art.34420

    Article  CAS  PubMed  Google Scholar 

  • Campbell CJ (1969) The healing of cartilage defects. Clin Orthop Relat Res 64:45–63

    CAS  PubMed  Google Scholar 

  • Carames B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M (2012) Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum 64(4):1182–1192. doi:10.1002/art.33444

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Tambe DT, Deng L, Yang L (2013) Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 305(12):C1202–C1208. doi:10.1152/ajpcell.00242.2013

    Article  CAS  PubMed  Google Scholar 

  • Chong KW, Chanalaris A, Burleigh A, Jin H, Watt FE, Saklatvala J, Vincent TL (2013) Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and in vivo. Arthritis Rheum 65(9):2346–2355. doi:10.1002/art.38039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury TT, Salter DM, Bader DL, Lee DA (2008) Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflamm Res: Off J Eur Histamine Res Soc [et al] 57(7):306–313. doi:10.1007/s00011-007-7126-y

    Article  CAS  Google Scholar 

  • Christiansen BA, Guilak F, Lockwood KA, Olson SA, Pitsillides AA, Sandell LJ, Silva MJ, van der Meulen MC, Haudenschild DR (2015) Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 23(10):1627–1638. doi:10.1016/j.joca.2015.05.009

    Article  CAS  Google Scholar 

  • Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62(10):2973–2983. doi:10.1002/art.27624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costouros JG, Kim HT (2007) Preventing chondrocyte programmed cell death caused by iatrogenic injury. Knee 14(2):107–111. doi:10.1016/j.knee.2006.10.013

    Article  PubMed  Google Scholar 

  • D’Lima D, Hermida J, Hashimoto S, Colwell C, Lotz M (2006) Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 54(6):1814–1821. doi:10.1002/art.21874

    Article  PubMed  Google Scholar 

  • Dang AC, Warren AP, Kim HT (2006) Beneficial effects of intra-articular caspase inhibition therapy following osteochondral injury. Osteoarthr Cartil/OARS Osteoarthr Res Soc 14(6):526–532. doi:10.1016/j.joca.2005.12.010

    Article  CAS  Google Scholar 

  • Dell’Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O’Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8(5):R139. doi:10.1186/ar2029

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58(5):1410–1421. doi:10.1002/art.23444

    Article  PubMed  Google Scholar 

  • DiMicco MA, Patwari P, Siparsky PN, Kumar S, Pratta MA, Lark MW, Kim YJ, Grodzinsky AJ (2004) Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury. Arthritis Rheum 50(3):840–848. doi:10.1002/art.20101

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Guo D, Homandberg GA (2008) The cartilage chondrolytic mechanism of fibronectin fragments involves MAP kinases: comparison of three fragments and native fibronectin. Osteoarthr Cartil/OARS Osteoarthr Res Soc 16(10):1253–1262. doi:10.1016/j.joca.2008.02.015

    Article  CAS  Google Scholar 

  • Ding L, Heying E, Nicholson N, Stroud NJ, Homandberg GA, Buckwalter JA, Guo D, Martin JA (2010) Mechanical impact induces cartilage degradation via mitogen activated protein kinases. Osteoarthr Cartil/OARS Osteoarthr Res Soc 18(11):1509–1517. doi:10.1016/j.joca.2010.08.014

    Article  CAS  Google Scholar 

  • Eltawil NM, De Bari C, Achan P, Pitzalis C, Dell’accio F (2009) A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthr Cartil/OARS Osteoarthr Res Soc 17(6):695–704. doi:10.1016/j.joca.2008.11.003

    Article  CAS  Google Scholar 

  • Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, Kurisu K, Suzuki F (1997) Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Min Res: Off J Am Soc Bone Min Res 12(7):1124–1132. doi:10.1359/jbmr.1997.12.7.1124

    Article  CAS  Google Scholar 

  • Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, et al. (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 278:50940–50948. doi: 10.1074/jbc.m305107200

  • Fitzgerald JB, Jin M, Chai DH, Siparsky P, Fanning P, Grodzinsky AJ (2008) Shear- and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J Biol Chem 283(11):6735–6743. doi:10.1074/jbc.M708670200

    Article  CAS  PubMed  Google Scholar 

  • Gardiner MD, Vincent TL, Driscoll C, Burleigh A, Bou-Gharios G, Saklatvala J, Nagase H, Chanalaris A (2015) Transcriptional analysis of micro-dissected articular cartilage in post-traumatic murine osteoarthritis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 23(4):616–628. doi:10.1016/j.joca.2014.12.014

    Article  CAS  Google Scholar 

  • Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, Majumdar MK, Morris EA (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033):644–648. doi:10.1038/nature03369

    Article  CAS  PubMed  Google Scholar 

  • Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, Martin JA (2010) Rotenone prevents impact-induced chondrocyte death. J Orthop Res: Off Publ Orthop Res Soc 28(8):1057–1063. doi:10.1002/jor.21091

    CAS  Google Scholar 

  • Gruber J, Vincent TL, Hermansson M, Bolton M, Wait R, Saklatvala J (2004) Induction of interleukin-1 in articular cartilage by explantation and cutting. Arthritis Rheum 50(8):2539–2546. doi:10.1002/art.20369

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, Setton LA, Haider MA (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci 1068:498–512. doi:10.1196/annals.1346.011

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Ding L, Homandberg GA (2009) Telopeptides of type II collagen upregulate proteinases and damage cartilage but are less effective than highly active fibronectin fragments. Inflamm Res: Off J Eur Histamine Res Soc [et al] 58(3):161–169. doi:10.1007/s00011-009-8090-5

    Article  CAS  Google Scholar 

  • Han SK, Wouters W, Clark A, Herzog W (2012) Mechanically induced calcium signaling in chondrocytes in situ. J Orthop Res: Off Publ Orthop Res Soc 30(3):475–481. doi:10.1002/jor.21536

    Article  CAS  Google Scholar 

  • Huveneers S, Danen EH (2009) Adhesion signaling – crosstalk between integrins, Src and Rho. J Cell Sci 122(Pt 8):1059–1069. doi:10.1242/jcs.039446

    Article  CAS  PubMed  Google Scholar 

  • Jang KW, Buckwalter JA, Martin JA (2014) Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res: Off Publ Orthop Res Soc 32(3):448–454. doi:10.1002/jor.22523

    Article  CAS  Google Scholar 

  • Killian ML, Haut RC, Haut Donahue TL (2014) Acute cell viability and nitric oxide release in lateral menisci following closed-joint knee injury in a lapine model of post-traumatic osteoarthritis. BMC Musculoskelet Disord 15:297. doi:10.1186/1471-2474-15-297

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn K, D’Lima DD, Hashimoto S, Lotz M (2004) Cell death in cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 12(1):1–16

    Article  CAS  Google Scholar 

  • Kvist AJ, Nystrom A, Hultenby K, Sasaki T, Talts JF, Aspberg A (2008) The major basement membrane components localize to the chondrocyte pericellular matrix – a cartilage basement membrane equivalent? Matrix Biol: J Int Soc Matrix Biol 27(1):22–33. doi:10.1016/j.matbio.2007.07.007

    Article  CAS  Google Scholar 

  • Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ (2005) Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52(8):2386–2395. doi:10.1002/art.21215

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, Grandl J, Sachs F, Guilak F, Liedtke WB (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111(47):E5114–E5122. doi:10.1073/pnas.1414298111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60(12):3723–3733. doi:10.1002/art.25002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madej W, van Caam A, Blaney Davidson EN, Hannink G, Buma P, van der Kraan PM (2016) Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 24(1):146–157. doi:10.1016/j.joca.2015.07.018

    Article  CAS  Google Scholar 

  • Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO (2009) N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 91(8):1890–1897. doi:10.2106/JBJS.H.00545

    Article  PubMed  PubMed Central  Google Scholar 

  • Meachim G (1963) The effect of scarification on articular cartilage in the rabbit. J Bone Joint Surg Br 45B:150–161

    Google Scholar 

  • Namdari S, Wei L, Moore D, Chen Q (2008) Reduced limb length and worsened osteoarthritis in adult mice after genetic inhibition of p38 MAP kinase activity in cartilage. Arthritis Rheum 58(11):3520–3529. doi:10.1002/art.23999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111(4):1316–1321. doi:10.1073/pnas.1319569111

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmoski M, Perricone E, Brandt KD (1979) Development and reversal of a proteoglycan aggregation defect in normal canine knee cartilage after immobilization. Arthritis Rheum 22(5):508–517. doi:10.1002/Art.1780220511

    Article  CAS  PubMed  Google Scholar 

  • Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60(10):3028–3037. doi:10.1002/art.24799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA (2011) Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 63(1):137–147. doi:10.1002/art.27765

    Article  PubMed  Google Scholar 

  • Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111:573–583

    CAS  PubMed  Google Scholar 

  • Rai MF, Hashimoto S, Johnson EE, Janiszak KL, Fitzgerald J, Heber-Katz E, Cheverud JM, Sandell LJ (2012) Heritability of articular cartilage regeneration and its association with ear wound healing in mice. Arthritis Rheum 64(7):2300–2310. doi:10.1002/art.34396

    Article  PubMed  PubMed Central  Google Scholar 

  • Redman SN, Dowthwaite GP, Thomson BM, Archer CW (2004) The cellular responses of articular cartilage to sharp and blunt trauma. Osteoarthr Cartil 12(2):106–116. doi:10.1016/J.Joca.2002.12.001

    Article  CAS  PubMed  Google Scholar 

  • Redman SN, Khan IM, Tew SR, Archer CW (2007) In situ detection of cell death in articular cartilage. Methods Mol Med 135:183–199

    Article  PubMed  Google Scholar 

  • Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis: Int J Program Cell Death 9(3):265–277

    Article  CAS  Google Scholar 

  • Rosenzweig DH, Djap MJ, Ou SJ, Quinn TM (2012) Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 20(12):1591–1602. doi:10.1016/j.joca.2012.08.012

    Article  CAS  Google Scholar 

  • Salter DM, Millward-Sadler SJ, Nuki G, Wright MO (2002) Differential responses of chondrocytes from normal and osteoarthritic human articular cartilage to mechanical stimulation. Biorheology 39(1–2):97–108

    CAS  PubMed  Google Scholar 

  • Sauter E, Buckwalter JA, McKinley TO, Martin JA (2012) Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res: Off Publ Orthop Res Soc 30(4):593–598. doi:10.1002/jor.21552

    Article  CAS  Google Scholar 

  • Seror J, Zhu L, Goldberg R, Day AJ, Klein J (2015) Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun 6:6497. doi:10.1038/ncomms7497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soder S, Hambach L, Lissner R, Kirchner T, Aigner T (2002) Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc 10(6):464–470. doi:10.1053/joca.2002.0512

    Article  CAS  Google Scholar 

  • Stockwell RA (1978) Chondrocytes. J Clin Pathol Suppl 12:7–13

    Article  CAS  Google Scholar 

  • Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr Cartil/OARS Osteoarthr Res Soc 12(11):852–862. doi:10.1016/j.joca.2004.07.004

    Article  CAS  Google Scholar 

  • Tew SR, Kwan AP, Hann A, Thomson BM, Archer CW (2000) The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 43(1):215–225. doi:10.1002/1529-0131(200001)43:1<215::AID-ANR26>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46(8):2073–2078. doi:10.1002/art.10462

    Article  CAS  PubMed  Google Scholar 

  • Vinall RL, Lo SH, Reddi AH (2002) Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res 272(1):32–44. doi:10.1006/excr.2001.5395

    Article  CAS  PubMed  Google Scholar 

  • Vincent T, Hermansson M, Bolton M, Wait R, Saklatvala J (2002) Basic FGF mediates an immediate response of articular cartilage to mechanical injury. Proc Natl Acad Sci U S A 99(12):8259–8264. doi:10.1073/pnas.122033199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent TL, Hermansson MA, Hansen UN, Amis AA, Saklatvala J (2004) Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. Arthritis Rheum 50(2):526–533. doi:10.1002/Art.20047

    Article  CAS  PubMed  Google Scholar 

  • Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J (2007) FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthr Cartil 15(7):752–763. doi:10.1016/j.joca.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  • Vincent TL, Williams RO, Maciewicz R, Silman A, Garside P, Working ARUAM (2012) Mapping pathogenesis of arthritis through small animal models. Rheumatology 51(11):1931–1941. doi:10.1093/rheumatology/kes035

    Article  PubMed  Google Scholar 

  • Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD (2013) Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A 110(15):5852–5857. doi:10.1073/pnas.1219289110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260(5111):1124–1127. doi:10.1126/Science.7684161

    Article  CAS  PubMed  Google Scholar 

  • Watt FE, Ismail HM, Didangelos A, Peirce M, Vincent TL, Wait R, Saklatvala J (2013) Src and fibroblast growth factor 2 independently regulate signaling and gene expression induced by experimental injury to intact articular cartilage. Arthritis Rheum 65(2):397–407. doi:10.1002/art.37765

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci 90(1):61–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonia L. Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ismail, H.M., Vincent, T.L. (2017). Cartilage Injury and Osteoarthritis. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-45803-8_2

Download citation

Publish with us

Policies and ethics