Skip to main content

Intervertebral Disc Degeneration

  • Chapter
  • First Online:
Cartilage

Abstract

The human spine consists of 23 intervertebral discs adjoining the vertebral bodies. These discs provide mechanical support and spinal motion and function to distribute loads from daily activities. Tissues of intervertebral discs share similarities to those of diarthrodial joints, such as a thin layer of cartilage that lines the interface between the joint and the bony elements and a central space rich in extracellular matrix molecules that promotes lubrication and maintains osmotic pressure. Like the pathophysiology of other cartilaginous joints, intervertebral discs undergo biomechanical and structural changes as a result of aging and mechanical insults. Due to higher mechanical loading, lumbar discs are more susceptible to degeneration, which can lead to symptomatic outcomes such as low back pain, sciatica, and other physical disabilities. These affect quality of life as we age and present a significant burden to the healthcare system globally. The etiology of intervertebral disc degeneration is not fully understood, but is a consequence of the changing structure and environment of its three interconnecting components, the nucleus pulposus, the annulus fibrosus, and the cartilaginous endplate, which function cooperatively to transmit load and regulate the cellular, biochemical, and nutritional properties of the disc. Abnormal changes in one or more of these disc compartments will compromise disc integrity and culminate in a degenerated disc state. Mechanistic insights into disc pathology can be gained through an understanding of the development and homeostasis of the intervertebral disc tissues. This chapter will provide an overview of the intervertebral disc in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MA, Dolan P (2012) Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat 221(6):497–506. doi:10.1111/j.1469-7580.2012.01551.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. 1981 Volvo Award in Basic Science. Spine 7(3):184–191

    Article  CAS  PubMed  Google Scholar 

  • Adams P, Muir H (1976) Qualitative changes with age of proteoglycans of human lumbar discs. Ann Rheum Dis 35(4):289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31(18):2151–2161. doi:10.1097/01.brs.0000231761.73859.2c

    Article  Google Scholar 

  • Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110(1):115–130

    CAS  PubMed  Google Scholar 

  • Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78(6):965–972

    Article  CAS  PubMed  Google Scholar 

  • Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV (2007) Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 293(2):C621–C631. doi:10.1152/ajpcell.00538.2006

    Article  CAS  PubMed  Google Scholar 

  • Aigner T, Gresk-otter KR, Fairbank JC, von der Mark K, Urban JP (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 63(3):263–268

    Article  CAS  PubMed  Google Scholar 

  • Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70(2):361–368. doi:10.1016/j.mehy.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  • Andrade P, Hoogland G, Garcia MA, Steinbusch HW, Daemen MA, Visser-Vandewalle V (2013) Elevated IL-1beta and IL-6 levels in lumbar herniated discs in patients with sciatic pain. Eur Spine J 22(4):714–720. doi:10.1007/s00586-012-2502-x

    Article  PubMed  Google Scholar 

  • Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J, Tervonen O, Kroger H, Lahde S, Vanharanta H, Ryhanen L, Goring HH, Ott J, Prockop DJ, Ala-Kokko L (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285(5426):409–412

    Article  CAS  PubMed  Google Scholar 

  • Arkesteijn IT, Smolders LA, Spillekom S, Riemers FM, Potier E, Meij BP, Ito K, Tryfonidou MA (2015) Effect of coculturing canine notochordal, nucleus pulposus and mesenchymal stromal cells for intervertebral disc regeneration. Arthritis Res Ther 17:60. doi:10.1186/s13075-015-0569-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143(5):1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babhulkar S (1997) Osteonecrosis in sickle cell hemoglobinopathy. In: Urbaniak JR, Jones JPJ (eds) Osteonecrosis: etiology, diagnosis, and treatment. American Orthopaedic Association, Rosemont, pp 131–133

    Google Scholar 

  • Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M, Boos N (2007) Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci 1096:44–54. doi:10.1196/annals.1397.069

    Article  CAS  PubMed  Google Scholar 

  • Baffi MO, Slattery E, Sohn P, Moses HL, Chytil A, Serra R (2004) Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol 276(1):124–142. doi:10.1016/j.ydbio.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  • Baffi MO, Moran MA, Serra R (2006) Tgfbr2 regulates the maintenance of boundaries in the axial skeleton. Dev Biol 296(2):363–374. doi:10.1016/j.ydbio.2006.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnall KM, Sanders EJ (1989) The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo. Anat Embryol (Berl) 180(5):505–513

    Article  CAS  Google Scholar 

  • Bagnall KM, Higgins SJ, Sanders EJ (1988) The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick-quail chimaera model. Development 103(1):69–85

    CAS  PubMed  Google Scholar 

  • Battie MC, Levalahti E, Videman T, Burton K, Kaprio J (2008) Heritability of lumbar flexibility and the role of disc degeneration and body weight. J Appl Physiol (1985) 104(2):379–385. doi:10.1152/japplphysiol.01009.2007

    Article  Google Scholar 

  • Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30(2):167–173

    Article  PubMed  Google Scholar 

  • Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 17(12):1451–1456. doi:10.1101/gad.1092303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby SR, Jones DA, Ripley RM, Urban JP (2005) Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30(5):487–496

    Article  PubMed  Google Scholar 

  • Bick EM, Copel JW (1951) The ring apophysis of the human vertebra; contribution to human osteogeny. II. J Bone Joint Surg Am 33-A(3):783–787

    Article  CAS  PubMed  Google Scholar 

  • Boos N, Wallin A, Gbedegbegnon T, Aebi M, Boesch C (1993) Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology 188(2):351–354. doi:10.1148/radiology.188.2.8327677

    Article  CAS  PubMed  Google Scholar 

  • Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108(6):471–480

    Article  CAS  PubMed  Google Scholar 

  • Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27(23):2631–2644. doi:10.1097/01.BRS.0000035304.27153.5B

    Article  PubMed  Google Scholar 

  • Borycki AG, Mendham L, Emerson CP Jr (1998) Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 125(4):777–790

    CAS  PubMed  Google Scholar 

  • Boxberger JI, Auerbach JD, Sen S, Elliott DM (2008) An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 33(2):146–154. doi:10.1097/BRS.0b013e31816054f8

    Article  PubMed  PubMed Central  Google Scholar 

  • Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42

    CAS  PubMed  Google Scholar 

  • Brand-Saberi B, Muller TS, Wilting J, Christ B, Birchmeier C (1996) Scatter factor/hepatocyte growth factor (SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 179(1):303–308. doi:10.1006/dbio.1996.0260

    Article  CAS  PubMed  Google Scholar 

  • Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech 3(Suppl 1):i-S23. doi:10.1016/S0268-0033(88)80001-9

    Google Scholar 

  • Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA (2002) Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 201(2):159–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruggeman BJ, Maier JA, Mohiuddin YS, Powers R, Lo Y, Guimaraes-Camboa N, Evans SM, Harfe BD (2012) Avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: implications for evolution of the vertebrate disc. Dev Dyn 241(4):675–683. doi:10.1002/dvdy.23750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31(8):873–882. doi:10.1097/01.brs.0000209302.00820.fd; discussion 883

    Article  PubMed  Google Scholar 

  • Carreon LY, Ito T, Yamada M, Uchiyama S, Takahashi HE (1997) Neovascularization induced by anulus and its inhibition by cartilage endplate. Its role in disc absorption. Spine (Phila Pa 1976) 22(13):1429–1434; discussion 1446–1427

    Article  CAS  Google Scholar 

  • Chan SC, Ferguson SJ, Gantenbein-Ritter B (2011) The effects of dynamic loading on the intervertebral disc. Eur Spine J 20(11):1796–1812. doi:10.1007/s00586-011-1827-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran PL, Horkay F (2012) Aggrecan, an unusual polyelectrolyte: review of solution behavior and physiological implications. Acta Biomater 8(1):3–12. doi:10.1016/j.actbio.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  • Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284(2):364–376. doi:10.1016/j.ydbio.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  • Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34(9):934–940. doi:10.1097/BRS.0b013e3181a01b3f

    Article  PubMed  Google Scholar 

  • Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237(12):3953–3958. doi:10.1002/dvdy.21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Johnson ZI, Risbud MV (2015) Understanding nucleus pulposus cell phenotype: a prerequisite for stem cell based therapies to treat intervertebral disc degeneration. Curr Stem Cell Res Ther 10(4):307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Huang R, Wilting J (2000) The development of the avian vertebral column. Anat Embryol (Berl) 202(3):179–194

    Article  CAS  Google Scholar 

  • Chujo T, An HS, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K (2006) Effects of growth differentiation factor-5 on the intervertebral disc – in vitro bovine study and in vivo rabbit disc degeneration model study. Spine (Phila Pa 1976) 31(25):2909–2917. doi:10.1097/01.brs.0000248428.22823.86

    Article  Google Scholar 

  • Court C, Colliou OK, Chin JR, Liebenberg E, Bradford DS, Lotz JC (2001) The effect of static in vivo bending on the murine intervertebral disc. Spine J 1(4):239–245

    Article  CAS  PubMed  Google Scholar 

  • Doita M, Kanatani T, Harada T, Mizuno K (1996) Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine (Phila Pa 1976) 21(2):235–241

    Article  CAS  Google Scholar 

  • Dong DM, Yao M, Liu B, Sun CY, Jiang YQ, Wang YS (2007) Association between the -1306C/T polymorphism of matrix metalloproteinase-2 gene and lumbar disc disease in Chinese young adults. Eur Spine J 16(11):1958–1961. doi:10.1007/s00586-007-0454-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106(2):219–232

    Article  CAS  PubMed  Google Scholar 

  • Durigova M, Nagase H, Mort JS, Roughley PJ (2011) MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol 30(2):145–153. doi:10.1016/j.matbio.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  • Edelson JG, Nathan H (1988) Stages in the natural history of the vertebral end-plates. Spine 13(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Erickson GR, Alexopoulos LG, Guilak F (2001) Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 34(12):1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Eskola PJ, Lemmela S, Kjaer P, Solovieva S, Mannikko M, Tommerup N, Lind-Thomsen A, Husgafvel-Pursiainen K, Cheung KM, Chan D, Samartzis D, Karppinen J (2012) Genetic association studies in lumbar disc degeneration: a systematic review. PLoS One 7(11):e49995. doi:10.1371/journal.pone.0049995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291

    Article  CAS  PubMed  Google Scholar 

  • Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157(1):267–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan CM, Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog omolog. Cell 79(7):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Li L, Liu H, Song Y, Huang F, Tu C, Shen B, Gong Q, Li T, Liu L, Zeng J, Kong Q, Yi M, Gupte M, Ma PX, Pei F (2013) Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds. Osteoarthritis Cartilage 21(4):582–588. doi:10.1016/j.joca.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37(2):213–221

    Article  PubMed  Google Scholar 

  • Ferrer-Vaquer A, Viotti M, Hadjantonakis AK (2010) Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adh Migr 4(3):447–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Galbusera F, Mietsch A, Schmidt H, Wilke HJ, Neidlinger-Wilke C (2013) Effect of intervertebral disc degeneration on disc cell viability: a numerical investigation. Comput Methods Biomech Biomed Engin 16(3):328–337. doi:10.1080/10255842.2011.619184

    Article  PubMed  Google Scholar 

  • Gilchrist CL, Witvoet-Braam SW, Guilak F, Setton LA (2007) Measurement of intracellular strain on deformable substrates with texture correlation. J Biomech 40(4):786–794. doi:10.1016/j.jbiomech.2006.03.013

    Article  PubMed  Google Scholar 

  • Gilson A, Dreger M, Urban JP (2010) Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers. Arthritis Res Ther 12(1):R24. doi:10.1186/ar2931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldstein RS, Kalcheim C (1992) Determination of epithelial half-somites in skeletal morphogenesis. Development 116(2):441–445

    CAS  PubMed  Google Scholar 

  • Gronblad M, Virri J, Tolonen J, Seitsalo S, Kaapa E, Kankare J, Myllynen P, Karaharju EO (1994) A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine (Phila Pa 1976) 19(24):2744–2751

    Article  CAS  Google Scholar 

  • Grotmol S, Kryvi H, Nordvik K, Totland GK (2003) Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon. Anat Embryol (Berl) 207(4–5):263–272. doi:10.1007/s00429-003-0349-y

    Article  Google Scholar 

  • Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42(4):465–477. doi:10.1016/j.ocl.2011.07.010, vii

    Article  PubMed  Google Scholar 

  • Guehring T, Wilde G, Sumner M, Grunhagen T, Karney GB, Tirlapur UK, Urban JP (2009) Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum 60(4):1026–1034. doi:10.1002/art.24407

    Article  PubMed  Google Scholar 

  • Han WM, Heo SJ, Driscoll TP, Smith LJ, Mauck RL, Elliott DM (2013) Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys J 105(3):807–817. doi:10.1016/j.bpj.2013.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashizume Y (1980) Pathological studies on the ossification of the posterior longitudinal ligament (opll). Acta Pathol Jpn 30(2):255–273

    CAS  PubMed  Google Scholar 

  • Hassler O (1969) The human intervertebral disc. A micro-angiographical study on its vascular supply at various ages. Acta Orthop Scand 40(6):765–772

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Benjamin M, Ralphs JR (1999) Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn 215(3):179–189. doi:10.1002/(SICI)1097-0177(199907)215:3<179::AID-AJA1>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Hirose Y, Chiba K, Karasugi T, Nakajima M, Kawaguchi Y, Mikami Y, Furuichi T, Mio F, Miyake A, Miyamoto T, Ozaki K, Takahashi A, Mizuta H, Kubo T, Kimura T, Tanaka T, Toyama Y, Ikegawa S (2008) A functional polymorphism in THBS2 that affects alternative splicing and MMP binding is associated with lumbar-disc herniation. Am J Hum Genet 82(5):1122–1129. doi:10.1016/j.ajhg.2008.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108. doi:10.1038/nrg1521

    Article  CAS  PubMed  Google Scholar 

  • Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8(2):101–119

    Article  CAS  PubMed  Google Scholar 

  • Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26(23):2543–2549

    Article  CAS  PubMed  Google Scholar 

  • Hoyland JA, Le Maitre C, Freemont AJ (2008) Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology (Oxford) 47(6):809–814. doi:10.1093/rheumatology/ken056

    Article  CAS  Google Scholar 

  • Hu ZJ, Zhao FD, Fang XQ, Fan SW (2009) Modic changes, possible causes and promotion to lumbar intervertebral disc degeneration. Med Hypotheses 73(6):930–932. doi:10.1016/j.mehy.2009.06.038

    Article  PubMed  Google Scholar 

  • Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of somitocoele cells in avian embryos. Anat Embryol (Berl) 190(3):243–250

    Article  CAS  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2003) The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. J Anat 202(Pt 3):279–291

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine 29(10):1099–1104

    Article  PubMed  Google Scholar 

  • Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine (Phila Pa 1976) 6(2):139–146

    Article  CAS  Google Scholar 

  • Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17(6):829–835. doi:10.1002/jor.1100170607

    Article  CAS  PubMed  Google Scholar 

  • Ishihara H, Warensjo K, Roberts S, Urban JP (1997) Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am J Physiol 272(5 Pt 1):C1499–C1506

    CAS  PubMed  Google Scholar 

  • Ishii T, Tsuji H, Sano A, Katoh Y, Matsui H, Terahata N (1991) Histochemical and ultrastructural observations on brown degeneration of human intervertebral disc. J Orthop Res 9(1):78–90. doi:10.1002/jor.1100090111

    Article  CAS  PubMed  Google Scholar 

  • Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408(6811):475–479. doi:10.1038/35044091

    Article  CAS  PubMed  Google Scholar 

  • Jim JJ, Noponen-Hietala N, Cheung KM, Ott J, Karppinen J, Sahraravand A, Luk KD, Yip SP, Sham PC, Song YQ, Leong JC, Cheah KS, Ala-Kokko L, Chan D (2005) The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine 30(24):2735–2742

    Article  PubMed  Google Scholar 

  • Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 46(10):2658–2664. doi:10.1002/art.10585

    Article  CAS  PubMed  Google Scholar 

  • Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV (2015) Disc in flames: roles of TNF-alpha and IL-1beta in intervertebral disc degeneration. Eur Cell Mater 30:104–116; discussion 116–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JPJ (1997) Subchondral osteonecrosis can conceivably cause disk degeneration and primary osteoarthritis. In: Urbaniak JR, Jones JPJ (eds) Osteonecrosis: etiology, diagnosis, and treatment. American Orthopaedic Association, Rosemont, pp 135–142

    Google Scholar 

  • Jones JP Jr, Engleman EP (1966) Osseous avascular necrosis associated with systemic abnormalities. Arthritis Rheum 9(5):728–736

    Article  PubMed  Google Scholar 

  • Kageyama R, Masamizu Y, Niwa Y (2007) Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn 236(6):1403–1409. doi:10.1002/dvdy.21114

    Article  CAS  PubMed  Google Scholar 

  • Karamouzian S, Eskandary H, Faramarzee M, Saba M, Safizade H, Ghadipasha M, Malekpoor AR, Ohadi A (2010) Frequency of lumbar intervertebral disc calcification and angiogenesis, and their correlation with clinical, surgical, and magnetic resonance imaging findings. Spine (Phila Pa 1976) 35(8):881–886. doi:10.1097/BRS.0b013e3181b9c986

    Article  Google Scholar 

  • Karasugi T, Semba K, Hirose Y, Kelempisioti A, Nakajima M, Miyake A, Furuichi T, Kawaguchi Y, Mikami Y, Chiba K, Kamata M, Ozaki K, Takahashi A, Makela P, Karppinen J, Kimura T, Kubo T, Toyama Y, Yamamura K, Mannikko M, Mizuta H, Ikegawa S (2009) Association of the tag SNPs in the human SKT gene (KIAA1217) with lumbar disc herniation. J Bone Miner Res 24(9):1537–1543. doi:10.1359/jbmr.090314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi Y, Osada R, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (1999) Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 24(23):2456–2460

    Article  CAS  PubMed  Google Scholar 

  • Kim DJ, Moon SH, Kim H, Kwon UH, Park MS, Han KJ, Hahn SB, Lee HM (2003) Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine (Phila Pa 1976) 28(24):2679–2684. doi:10.1097/01.BRS.0000101445.46487.16

    Article  Google Scholar 

  • Kurunlahti M, Tervonen O, Vanharanta H, Ilkko E, Suramo I (1999) Association of atherosclerosis with low back pain and the degree of disc degeneration. Spine 24(20):2080–2084

    Article  CAS  PubMed  Google Scholar 

  • Lammi P, Inkinen RI, von der Mark K, Puustjarvi K, Arokoski J, Hyttinen MM, Lammi MJ (1998) Localization of type X collagen in the intervertebral disc of mature beagle dogs. Matrix Biol 17(6):449–453

    Article  CAS  PubMed  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7(4):R732–R745. doi:10.1186/ar1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Maitre CL, Hoyland JA, Freemont AJ (2007a) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9(4):R77. doi:10.1186/ar2275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007b) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35(Pt 4):652–655. doi:10.1042/BST0350652

    PubMed  Google Scholar 

  • Li X, Leo BM, Beck G, Balian G, Anderson GD (2004) Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine (Phila Pa 1976) 29(20):2229–2234

    Article  Google Scholar 

  • Livshits G, Cohen Z, Higla O, Yakovenko K (2001) Familial history, age and smoking are important risk factors for disc degeneration disease in Arabic pedigrees. Eur J Epidemiol 17(7):643–651

    Article  CAS  PubMed  Google Scholar 

  • Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476–5479. doi:10.1182/blood-2009-02-204800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotz J, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) 1998 Volvo Award Winner in Biomechanical Studies: compression‐induced degeneration of the intervertebral disc: an in vivo mouse model and finite‐element study. Spine 23(23):2493–2506

    Article  CAS  PubMed  Google Scholar 

  • Luk KD, Samartzis D (2015) Intervertebral disc “dysgeneration”. Spine J 15(9):1915–1918. doi:10.1016/j.spinee.2014.07.020

    Article  PubMed  Google Scholar 

  • Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673(4):443–453

    Article  CAS  PubMed  Google Scholar 

  • Maclean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22(6):1193–1200. doi:10.1016/j.orthres.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  • Magnier C, Boiron O, Wendling-Mansuy S, Chabrand P, Deplano V (2009) Nutrient distribution and metabolism in the intervertebral disc in the unloaded state: a parametric study. J Biomech 42(2):100–108. doi:10.1016/j.jbiomech.2008.10.034

    Article  PubMed  Google Scholar 

  • Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15(5):402–410

    Article  CAS  PubMed  Google Scholar 

  • Maroto M, Pourquie O (2001) A molecular clock involved in somite segmentation. Curr Top Dev Biol 51:221–248

    Article  CAS  PubMed  Google Scholar 

  • Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120(Pt 1):113–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCann MR, Tamplin OJ, Rossant J, Seguin CA (2012) Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech 5(1):73–82. doi:10.1242/dmm.008128

    Article  CAS  PubMed  Google Scholar 

  • McNally DS, Adams MA, Goodship AE (1993) Can intervertebral disc prolapse be predicted by disc mechanics? Spine 18(11):1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Taylor TK, Ghosh P (1996) Variation in intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid (greyhound) canine breed. Gerontology 42(6):322–329

    Article  CAS  PubMed  Google Scholar 

  • Melrose J, Smith SM, Appleyard RC, Little CB (2008) Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J 17(2):314–324. doi:10.1007/s00586-007-0538-0

    Article  PubMed  Google Scholar 

  • Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13(2):173–178

    Article  CAS  PubMed  Google Scholar 

  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62(12):3695–3705. doi:10.1002/art.27710

    Article  PubMed  Google Scholar 

  • Mio F, Chiba K, Hirose Y, Kawaguchi Y, Mikami Y, Oya T, Mori M, Kamata M, Matsumoto M, Ozaki K, Tanaka T, Takahashi A, Kubo T, Kimura T, Toyama Y, Ikegawa S (2007) A functional polymorphism in COL11A1, which encodes the alpha 1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am J Hum Genet 81(6):1271–1277. doi:10.1086/522377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Kobayashi S, Takeno K, Meir A, Urban J, Baba H (2009) A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders? Tissue Eng Part A 15(12):3835–3846. doi:10.1089/ten.tea.2009.0250

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A, Hall AC, Urban JP, France SJ, Smith AL (1997) Immunologic andautoradiographic localisation of the Naþ, K(þ)-ATPase in articular cartilage: upregulationin response to changes in extracellular Naþ concentration. Int J Biochem Cell Biol 29:649–657

    Article  CAS  PubMed  Google Scholar 

  • Mokhbi Soukane D, Shirazi-Adl A, Urban JP (2009) Investigation of solute concentrations in a 3D model of intervertebral disc. Eur Spine J 18(2):254–262. doi:10.1007/s00586-008-0822-7

    Article  CAS  PubMed  Google Scholar 

  • Monsoro-Burq AH (2005) Sclerotome development and morphogenesis: when experimental embryology meets genetics. Int J Dev Biol 49(2–3):301–308. doi:10.1387/ijdb.041953am

    Article  PubMed  CAS  Google Scholar 

  • Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM (2013) Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J 22(8):1820–1828. doi:10.1007/s00586-013-2798-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15(Suppl 3):S333–S337. doi:10.1007/s00586-006-0170-4

    Article  PubMed  Google Scholar 

  • Morgelin M, Paulsson M, Hardingham TE, Heinegard D, Engel J (1988) Cartilage proteoglycans. Assembly with hyaluronate and link protein as studied by electron microscopy. Biochem J 253(1):175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto M, Takahashi Y, Endo M, Saga Y (2005) The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435(7040):354–359. doi:10.1038/nature03591

  • Mwale F, Ciobanu I, Giannitsios D, Roughley P, Steffen T, Antoniou J (2011) Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells. Spine 36(2):E131–E138. doi:10.1097/BRS.0b013e3181d52b9e

    Article  PubMed  Google Scholar 

  • Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5(2):94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31):21491–21494

    Article  CAS  PubMed  Google Scholar 

  • Naresh-Babu J, Neelima G, Reshma Begum S, Siva-Leela V (2016) Diffusion characteristics of human annulus fibrosus. – A study documenting the dependence of annulus fibrosus on endplate for diffusion. Spine J. doi:10.1016/j.spinee.2016.03.046

    PubMed  Google Scholar 

  • Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15(Suppl 3):S372–S378. doi:10.1007/s00586-006-0112-1

    Article  PubMed  Google Scholar 

  • Nerlich AG, Boos N (2016) Advances in lumbar degenerative disk disease pathophysiology comprehension. In: João Luiz Pinheiro-Franco, Alexander R. Vaccaro, Edward C. Benzel and H. Michael Mayer (eds) Advanced concepts in lumbar degenerative disk disease. Springer, Berlin, pp 41–60. doi:10.1007/978-3-662-47756-4_4

  • Nguyen-minh C, Haughton VM, Papke RA, An H, Censky SC (1998) Measuring diffusion of solutes into intervertebral disks with MR imaging and paramagnetic contrast medium. AJNR Am J Neuroradiol 19(9):1781–1784

    CAS  PubMed  Google Scholar 

  • Nosikova YS, Santerre JP, Grynpas M, Gibson G, Kandel RA (2012) Characterization of the annulus fibrosus-vertebral body interface: identification of new structural features. J Anat 221(6):577–589. doi:10.1111/j.1469-7580.2012.01537.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paassilta P, Lohiniva J, Goring HH, Perala M, Raina SS, Karppinen J, Hakala M, Palm T, Kroger H, Kaitila I, Vanharanta H, Ott J, Ala-Kokko L (2001) Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285(14):1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Peacock A (1951) Observations on the prenatal development of the intervertebral disc in man. J Anat 85(3):260–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878

    Article  CAS  PubMed  Google Scholar 

  • Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60(2):482–491. doi:10.1002/art.24291

    Article  CAS  PubMed  Google Scholar 

  • Poiraudeau S, Monteiro I, Anract P, Blanchard O, Revel M, Corvol MT (1999) Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals. Spine 24(9):837–844

    Article  CAS  PubMed  Google Scholar 

  • Pourquie O (2003) The segmentation clock: converting embryonic time into spatial pattern. Science 301(5631):328–330. doi:10.1126/science.1085887

    Article  CAS  PubMed  Google Scholar 

  • Pourquie O (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145(5):650–663. doi:10.1016/j.cell.2011.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourquie O, Coltey M, Teillet MA, Ordahl C, Le Douarin NM (1993) Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc Natl Acad Sci U S A 90(11):5242–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power KA, Grad S, Rutges JP, Creemers LB, van Rijen MH, O’Gaora P, Wall JG, Alini M, Pandit A, Gallagher WM (2011) Identification of cell surface-specific markers to target human nucleus pulposus cells: expression of carbonic anhydrase XII varies with age and degeneration. Arthritis Rheum 63(12):3876–3886. doi:10.1002/art.30607

    Article  CAS  PubMed  Google Scholar 

  • Pritchard S, Erickson GR, Guilak F (2002) Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton. Biophys J 83(5):2502–2510. doi:10.1016/S0006-3495(02)75261-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purmessur D, Cornejo MC, Cho SK, Roughley PJ, Linhardt RJ, Hecht AC, Iatridis JC (2015) Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability. Spine J 15(5):1060–1069. doi:10.1016/j.spinee.2015.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29(23):2654–2667

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643. doi:10.1007/s00586-008-0645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rannou F, Corvol MT, Hudry C, Anract P, Dumontier MF, Tsagris L, Revel M, Poiraudeau S (2000) Sensitivity of anulus fibrosus cells to interleukin 1 beta. Comparison with articular chondrocytes. Spine (Phila Pa 1976) 25(1):17–23

    Article  CAS  Google Scholar 

  • Razaq S, Wilkins RJ, Urban JP (2003) The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J 12(4):341–349. doi:10.1007/s00586-003-0582-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Risbud MV, Fertala J, Vresilovic EJ, Albert TJ, Shapiro IM (2005) Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine 30(8):882–889

    Article  PubMed  Google Scholar 

  • Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21(4):415–420

    Article  CAS  PubMed  Google Scholar 

  • Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 25(23):3005–3013

    Article  CAS  Google Scholar 

  • Rodrigo I, Hill RE, Balling R, Munsterberg A, Imai K (2003) Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development 130(3):473–482

    Article  CAS  PubMed  Google Scholar 

  • Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29(23):2691–2699

    Article  PubMed  Google Scholar 

  • Roughley PJ, Mort JS (2014) The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 1(1):8. doi:10.1186/s40634-014-0008-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Roughley PJ, Melching LI, Heathfield TF, Pearce RH, Mort JS (2006a) The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 15(Suppl 3):S326–S332. doi:10.1007/s00586-006-0127-7

    Article  PubMed  Google Scholar 

  • Roughley PJ, Martens D, Rantakokko J, Alini M, Mwale F, Antoniou J (2006b) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater 11:1–7; discussion 7

    Article  CAS  PubMed  Google Scholar 

  • Rudert M, Tillmann B (1993) Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat 175(3):237–242

    Article  CAS  PubMed  Google Scholar 

  • Rutges JP, Duit RA, Kummer JA, Oner FC, van Rijen MH, Verbout AJ, Castelein RM, Dhert WJ, Creemers LB (2010) Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18(11):1487–1495. doi:10.1016/j.joca.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Saga Y, Takeda H (2001) The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet 2(11):835–845. doi:10.1038/35098552

    Article  CAS  PubMed  Google Scholar 

  • Sahlman J, Inkinen R, Hirvonen T, Lammi MJ, Lammi PE, Nieminen J, Lapvetelainen T, Prockop DJ, Arita M, Li SW, Hyttinen MM, Helminen HJ, Puustjarvi K (2001) Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine (Phila Pa 1976) 26(23):2558–2565

    Article  CAS  Google Scholar 

  • Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264. doi:10.1038/ncomms2226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakai D, Nishimura K, Tanaka M, Nakajima D, Grad S, Alini M, Kawada H, Ando K, Mochida J (2015) Migration of bone marrow-derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study. Spine J 15(6):1356–1365. doi:10.1016/j.spinee.2013.07.491

    Article  PubMed  Google Scholar 

  • Sambrook PN, MacGregor AJ, Spector TD (1999) Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 42(2):366–372. doi:10.1002/1529-0131(199902)42:2<366::AID-ANR20>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Sandell LJ, Morris N, Robbins JR, Goldring MB (1991) Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol 114(6):1307–1319

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin WH, Watkins RG (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine 12(3):276–281

    Article  CAS  PubMed  Google Scholar 

  • Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25(21):2736–2741

    Article  CAS  Google Scholar 

  • Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC (1993) Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 11(2):228–239. doi:10.1002/jor.1100110210

    Article  CAS  PubMed  Google Scholar 

  • Shen G (2005) The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8(1):11–17. doi:10.1111/j.1601-6343.2004.00308.x

    Article  CAS  PubMed  Google Scholar 

  • Shinmei M, Kikuchi T, Yamagishi M, Shimomura Y (1988) The role of interleukin-1 on proteoglycan metabolism of rabbit annulus fibrosus cells cultured in vitro. Spine (Phila Pa 1976) 13(11):1284–1290

    Article  CAS  Google Scholar 

  • Sivan SS, Hayes AJ, Wachtel E, Caterson B, Merkher Y, Maroudas A, Brown S, Roberts S (2014) Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J 23(Suppl 3):S344–S353. doi:10.1007/s00586-013-2767-8

    Article  PubMed  Google Scholar 

  • Smith LJ, Elliott DM (2011) Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression. Matrix Biol 30(4):267–274. doi:10.1016/j.matbio.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LJ, Chiaro JA, Nerurkar NL, Cortes DH, Horava SD, Hebela NM, Mauck RL, Dodge GR, Elliott DM (2011) Nucleus pulposus cells synthesize a functional extracellular matrix and respond to inflammatory cytokine challenge following long-term agarose culture. Eur Cell Mater 22:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolders LA, Bergknut N, Grinwis GC, Hagman R, Lagerstedt AS, Hazewinkel HA, Tryfonidou MA, Meij BP (2013) Intervertebral disc degeneration in the dog. Part 2: chondrodystrophic and non-chondrodystrophic breeds. Vet J 195(3):292–299. doi:10.1016/j.tvjl.2012.10.011

    Article  PubMed  Google Scholar 

  • Sohn P, Cox M, Chen D, Serra R (2010) Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc. BMC Dev Biol 10:29. doi:10.1186/1471-213X-10-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solovieva S, Kouhia S, Leino-Arjas P, Ala-Kokko L, Luoma K, Raininko R, Saarela J, Riihimaki H (2004a) Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology 15(5):626–633

    Article  PubMed  Google Scholar 

  • Solovieva S, Leino-Arjas P, Saarela J, Luoma K, Raininko R, Riihimaki H (2004b) Possible association of interleukin 1 gene locus polymorphisms with low back pain. Pain 109(1–2):8–19. doi:10.1016/j.pain.2003.10.020

    Article  CAS  PubMed  Google Scholar 

  • Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, Ala-Kokko L, Riihimaki H (2006) Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur Spine J 15(5):613–619. doi:10.1007/s00586-005-0988-1

    Article  PubMed  Google Scholar 

  • Song YQ, Ho DW, Karppinen J, Kao PY, Fan BJ, Luk KD, Yip SP, Leong JC, Cheah KS, Sham P, Chan D, Cheung KM (2008a) Association between promoter -1607 polymorphism of MMP1 and lumbar disc disease in Southern Chinese. BMC Med Genet 9:38. doi:10.1186/1471-2350-9-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YQ, Cheung KM, Ho DW, Poon SC, Chiba K, Kawaguchi Y, Hirose Y, Alini M, Grad S, Yee AF, Leong JC, Luk KD, Yip SP, Karppinen J, Cheah KS, Sham P, Ikegawa S, Chan D (2008b) Association of the asporin D14 allele with lumbar-disc degeneration in Asians. Am J Hum Genet 82(3):744–747. doi:10.1016/j.ajhg.2007.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song YQ, Karasugi T, Cheung KM, Chiba K, Ho DW, Miyake A, Kao PY, Sze KL, Yee A, Takahashi A, Kawaguchi Y, Mikami Y, Matsumoto M, Togawa D, Kanayama M, Shi D, Dai J, Jiang Q, Wu C, Tian W, Wang N, Leong JC, Luk KD, Yip SP, Cherny SS, Wang J, Mundlos S, Kelempisioti A, Eskola PJ, Mannikko M, Makela P, Karppinen J, Jarvelin MR, O’Reilly PF, Kubo M, Kimura T, Kubo T, Toyama Y, Mizuta H, Cheah KS, Tsunoda T, Sham PC, Ikegawa S, Chan D (2013) Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. J Clin Invest 123(11):4909–4917. doi:10.1172/JCI69277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132(11):2503–2512. doi:10.1242/dev.01812

    Article  CAS  PubMed  Google Scholar 

  • Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29(23):2724–2732

    Article  PubMed  Google Scholar 

  • Sun ZM, Miao L, Zhang YG, Ming L (2009) Association between the -1562 C/T polymorphism of matrix metalloproteinase-9 gene and lumbar disc disease in the young adult population in North China. Connect Tissue Res 50(3):181–185. doi:10.1080/03008200802585630

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Suguro T, Okazima Y, Motegi M, Okada Y, Kakiuchi T (1996) Inflammatory cytokines in the herniated disc of the lumbar spine. Spine (Phila Pa 1976) 21(2):218–224

    Article  CAS  Google Scholar 

  • Takahashi M, Haro H, Wakabayashi Y, Kawa-uchi T, Komori H, Shinomiya K (2001) The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br 83(4):491–495

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. doi:10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  • Thompson JP, Oegema TR Jr, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976) 16(3):253–260

    Article  CAS  Google Scholar 

  • Tribioli C, Lufkin T (1999) The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126(24):5699–5711

    CAS  PubMed  Google Scholar 

  • Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982a) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14(2):359–369

    Article  CAS  PubMed  Google Scholar 

  • Trout JJ, Buckwalter JA, Moore KC (1982b) Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 204(4):307–314. doi:10.1002/ar.1092040403

    Article  CAS  PubMed  Google Scholar 

  • Urban JP, Maroudas A (1979) The measurement of fixed charged density in the intervertebral disc. Biochim Biophys Acta (BBA) – Gen Subj 586(1):166–178. doi:10.1016/0304-4165(79)90415-X

    Article  CAS  Google Scholar 

  • Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine (Phila Pa 1976) 13(2):179–187

    Article  CAS  Google Scholar 

  • Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5(3):120–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Urban JP, Ishihara H, Mouat MJ (1994) Differential metabolic responses of the nucleus and outer annulus to changes in extracellular physical factors. Trans Orthop Res Soc 19:134

    Google Scholar 

  • Urban JP, Roberts S, Ralphs JR (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40(1):53–61. doi:10.1093/icb/40.1.53

    Google Scholar 

  • Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29(23):2700–2709

    Article  PubMed  Google Scholar 

  • van der Rest M, Mayne R (1988) Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263(4):1615–1618

    PubMed  Google Scholar 

  • Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J (1996) Water transport across mammalian cell membranes. Am J Physiol 270(1 Pt 1):C12–C30

    CAS  PubMed  Google Scholar 

  • Vernon-Roberts B, Moore RJ, Fraser RD (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine (Phila Pa 1976) 32(25):2797–2804. doi:10.1097/BRS.0b013e31815b64d2

    Article  Google Scholar 

  • Walker BF (2000) The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord 13(3):205–217

    Article  CAS  PubMed  Google Scholar 

  • Walsh AJ, Bradford DS, Lotz JC (2004) In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976) 29(2):156–163. doi:10.1097/01.BRS.0000107231.67854.9F

    Article  Google Scholar 

  • Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem 124(4):687–693

    Article  CAS  PubMed  Google Scholar 

  • Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine (Phila Pa 1976) 30(1):44–53; discussion 54

    Article  Google Scholar 

  • Williams FM, Popham M, Hart DJ, de Schepper E, Bierma-Zeinstra S, Hofman A, Uitterlinden AG, Arden NK, Cooper C, Spector TD, Valdes AM, van Meurs J (2011) GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. Arthritis Rheum 63(3):708–712. doi:10.1002/art.30169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams FM, Bansal AT, van Meurs JB, Bell JT, Meulenbelt I, Suri P, Rivadeneira F, Sambrook PN, Hofman A, Bierma-Zeinstra S, Menni C, Kloppenburg M, Slagboom PE, Hunter DJ, MacGregor AJ, Uitterlinden AG, Spector TD (2013) Novel genetic variants associated with lumbar disc degeneration in northern Europeans: a meta-analysis of 4600 subjects. Ann Rheum Dis 72(7):1141–1148. doi:10.1136/annrheumdis-2012-201551

    Article  CAS  PubMed  Google Scholar 

  • Wu JJ, Woods PE, Eyre DR (1992) Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 267(32):23007–23014

    CAS  PubMed  Google Scholar 

  • Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13(6):884–896. doi:10.1016/j.devcel.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Fairbank JC, Roberts S, Urban JP (2005) The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine (Phila Pa 1976) 30(16):1815–1820

    Article  Google Scholar 

  • Yu J, Tirlapur U, Fairbank J, Handford P, Roberts S, Winlove CP, Cui Z, Urban J (2007a) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210(4):460–471. doi:10.1111/j.1469-7580.2007.00707.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007b) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  • Yu SW, Yen CY, Wu CH, Kao FC, Kao YH, Tu YK (2012) Radiographic and clinical results of posterior dynamic stabilization for the treatment of multisegment degenerative disc disease with a minimum follow-up of 3 years. Arch Orthop Trauma Surg 132(5):583–589. doi:10.1007/s00402-012-1460-4

    Article  PubMed  Google Scholar 

  • Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB (2002) Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 16(15):1990–2005. doi:10.1101/gad.1008002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lenart BA, Lee JK, Chen D, Shi P, Ren J, Muehleman C, Chen D, An HS (2014) Histological features of endplates of the mammalian spine: from mice to men. Spine 39(5):E312–E317. doi:10.1097/BRS.0000000000000174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7(12):2080–2089. doi:10.1038/nprot.2012.115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Chan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shah, A.M., Kwon, S.Y.J., Chan, W.C.W., Chan, D. (2017). Intervertebral Disc Degeneration. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-45803-8_10

Download citation

Publish with us

Policies and ethics