Cartilage pp 1-25 | Cite as

Pathogenesis of Osteoarthritis in General

  • Mary B. GoldringEmail author
  • Kirsty L. Culley
  • Miguel Otero


Osteoarthritis (OA) is the most common joint disorder and is a leading cause of disability in the adult population. It is now appreciated that all components of the joint, including the cartilage, calcified cartilage, synovial joint lining, and periarticular bone, undergo pathological changes during the initiation and progression of OA. Some of these alterations can be attributed to direct injury and mechanical disruption of the tissues, but in general the mechanisms are dependent on active cell-mediated processes that occur during the long time course of the disease. Based on clinical observations and experimental studies, it is now recognized that it is possible for individual patients to exhibit common sets of symptoms and structural abnormalities due to distinct pathophysiological pathways that act independently or in combination. Recent research focusing on the underlying pathological mechanisms has identified complex signaling networks involving biochemical cross talk among the cartilage, synovium, bone, and other joint tissues. These complex networks involve interplay among anabolic, catabolic, and inflammatory signals within a background of poorly characterized genetic factors. A deeper understanding of the specific and unique roles of these mediators and their downstream targets will provide mechanistic insights into the pathologic processes that affect the cartilage and other joint tissues in OA but also may identify potential therapeutic targets for treatment of this debilitating disease.


Periarticular bone Articular cartilage Osteophyte Synovitis Inflammation Mechanical loading 


  1. Amin AK, Huntley JS, Simpson AH, Hall AC (2009) Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg Br 91(5):691–699. doi: 10.1302/0301-620X.91B5.21544 PubMedCrossRefGoogle Scholar
  2. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, Buckwalter JA (2011) Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 29(6):802–809. doi: 10.1002/jor.21359 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Appleton CT, Pitelka V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56(6):1854–1868. doi: 10.1002/art.22711 PubMedCrossRefGoogle Scholar
  4. Ashraf S, Mapp PI, Walsh DA (2011a) Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum 63(9):2700–2710. doi: 10.1002/art.30422 PubMedCrossRefGoogle Scholar
  5. Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh DA (2011b) Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis 70(3):523–529. doi: 10.1136/ard.2010.137844 PubMedCrossRefGoogle Scholar
  6. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13(5):361–367PubMedCrossRefGoogle Scholar
  7. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192. doi: 10.1038/nm.3074 PubMedCrossRefGoogle Scholar
  8. Barr L, Getgood A, Guehring H, Rushton N, Henson FM (2014) The effect of recombinant human fibroblast growth factor-18 on articular cartilage following single impact load. J Orthop Res 32(7):923–927. doi: 10.1002/jor.22622 PubMedCrossRefGoogle Scholar
  9. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64(9):1263–1267. doi: 10.1136/ard.2004.025270 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21(1):16–21. doi: 10.1016/j.joca.2012.11.012 PubMedCrossRefGoogle Scholar
  11. Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377(9783):2115–2126. doi: 10.1016/S0140-6736(11)60243-2, S0140-6736(11)60243-2 [pii]PubMedCrossRefGoogle Scholar
  12. Blanco FJ, Ruiz-Romero C (2012) Osteoarthritis: metabolomic characterization of metabolic phenotypes in OA. Nat Rev Rheumatol 8(3):130–132. doi: 10.1038/nrrheum.2012.11 PubMedCrossRefGoogle Scholar
  13. Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM (2009) Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 182(12):7937–7945. doi: 10.4049/jimmunol.0803991 PubMedCrossRefGoogle Scholar
  14. Blaney Davidson EN, van Caam AP, Vitters EL, Bennink MB, Thijssen E, van den Berg WB, Koenders MI, van Lent PL, van de Loo FA, van der Kraan PM (2014) TGF-beta is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage. doi: 10.1016/j.joca.2014.12.005 Google Scholar
  15. Botter SM, van Osch GJ, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JP (2011) Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 63(9):2690–2699. doi: 10.1002/art.30307 PubMedCrossRefGoogle Scholar
  16. Bougault C, Priam S, Houard X, Pigenet A, Sudre L, Lories RJ, Jacques C, Berenbaum F (2014) Protective role of frizzled-related protein B on matrix metalloproteinase induction in mouse chondrocytes. Arthritis Res Ther 16(4):R137. doi: 10.1186/ar4599 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bowes MA, McLure SW, Wolstenholme CB, Vincent GR, Williams S, Grainger A, Conaghan PG (2015) Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative. Ann Rheum Dis. doi: 10.1136/annrheumdis-2015-208407 PubMedCentralGoogle Scholar
  18. Brower TD, Akahoshi Y, Orlic P (1962) The diffusion of dyes thorugh articular cartilage in vivo. J Bone Joint Surg 44-A:456–463CrossRefGoogle Scholar
  19. Buckwalter JA, Brown TD (2004) Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res 423:7–16CrossRefGoogle Scholar
  20. Bullough PG (2004) The role of joint architecture in the etiology of arthritis. Osteoarthritis Cartilage 12 Suppl A:S2–S9PubMedCrossRefGoogle Scholar
  21. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8(11):665–673. doi: 10.1038/nrrheum.2012.130 PubMedCrossRefGoogle Scholar
  22. Burr DB, Schaffler MB (1997) The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 37(4):343–357PubMedCrossRefGoogle Scholar
  23. Bush JR, Beier F (2013) TGF-beta and osteoarthritis – the good and the bad. Nat Med 19(6):667–669. doi: 10.1038/nm.3228 PubMedCrossRefGoogle Scholar
  24. Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN, Little CB (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage 19(7):874–885. doi: 10.1016/j.joca.2011.04.014 PubMedCrossRefGoogle Scholar
  25. Chou CH, Wu CC, Song IW, Chuang HP, Lu LS, Chang JH, Kuo SY, Lee CH, Wu JY, Chen YT, Kraus VB, Lee MT (2013) Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther 15(6):R190. doi: 10.1186/ar4380 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Christiansen BA, Guilak F, Lockwood KA, Olson SA, Pitsillides AA, Sandell LJ, Silva MJ, van der Meulen MC, Haudenschild DR (2015) Non-invasive mouse models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 23(10):1627–1638. doi: 10.1016/j.joca.2015.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Conaghan PG (2013) Osteoarthritis in 2012: parallel evolution of OA phenotypes and therapies. Nat Rev Rheumatol 9(2):68–70. doi: 10.1038/nrrheum.2012.225 PubMedCrossRefGoogle Scholar
  28. de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, Zuurmond AM, Schoones J, Toes RE, Huizinga TW, Kloppenburg M (2012) Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20(12):1484–1499. doi: 10.1016/j.joca.2012.08.027 PubMedCrossRefGoogle Scholar
  29. Detert J, Klaus P, Listing J, Hohne-Zimmer V, Braun T, Wassenberg S, Rau R, Buttgereit F, Burmester GR (2014) Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands (OA TREAT): study protocol for a randomized controlled trial. Trials 15:412. doi: 10.1186/1745-6215-15-412 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ (2013) Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 114(4):735–742. doi: 10.1002/jcb.24418 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Endres M, Andreas K, Kalwitz G, Freymann U, Neumann K, Ringe J, Sittinger M, Haupl T, Kaps C (2010) Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis Cartilage 18(11):1458–1466. doi: 10.1016/j.joca.2010.08.003 PubMedCrossRefGoogle Scholar
  32. Englund M, Lohmander LS (2004) Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 50(9):2811–2819PubMedCrossRefGoogle Scholar
  33. Englund M, Guermazi A, Roemer FW, Aliabadi P, Yang M, Lewis CE, Torner J, Nevitt MC, Sack B, Felson DT (2009) Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum 60(3):831–839. doi: 10.1002/art.24383 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fang H, Beier F (2014) Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol 10(7):413–421. doi: 10.1038/nrrheum.2014.46 PubMedCrossRefGoogle Scholar
  35. Felson DT, Gale DR, Elon Gale M, Niu J, Hunter DJ, Goggins J, Lavalley MP (2005) Osteophytes and progression of knee osteoarthritis. Rheumatology (Oxford) 44(1):100–104. doi: 10.1093/rheumatology/keh411 CrossRefGoogle Scholar
  36. Fosang AJ, Beier F (2011) Emerging Frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25(6):751–766. doi: 10.1016/j.berh.2011.11.010 PubMedCrossRefGoogle Scholar
  37. Funck-Brentano T, Bouaziz W, Marty C, Geoffroy V, Hay E, Cohen-Solal M (2014) Dkk1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis. Arthritis Rheum. doi: 10.1002/art.38799 Google Scholar
  38. Gelse K, Ekici AB, Cipa F, Swoboda B, Carl HD, Olk A, Hennig FF, Klinger P (2012) Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthritis Cartilage 20(2):162–171. doi: 10.1016/j.joca.2011.12.004 PubMedCrossRefGoogle Scholar
  39. Gobezie R, Kho A, Krastins B, Sarracino DA, Thornhill TS, Chase M, Millett PJ, Lee DM (2007) High abundance synovial fluid proteome: distinct profiles in health and osteoarthritis. Arthritis Res Ther 9(2):R36. doi: 10.1186/ar2172 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Goldring MB, Berenbaum F (2015) Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol 22:51–63. doi: 10.1016/j.coph.2015.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634. doi: 10.1002/jcp.21258 PubMedCrossRefGoogle Scholar
  42. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237. doi: 10.1111/j.1749-6632.2009.05240.x PubMedCrossRefGoogle Scholar
  43. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11(3):224. doi: 10.1186/ar2592 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23(5):471–478. doi: 10.1097/BOR.0b013e328349c2b1 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzi RM, Marcu KB (2011) Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 21:202–220PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gomez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G (2014) TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat Rev Rheumatol. doi: 10.1038/nrrheum.2014.209 PubMedGoogle Scholar
  47. Gu XI, Palacio-Mancheno PE, Leong DJ, Borisov YA, Williams E, Maldonado N, Laudier D, Majeska RJ, Schaffler MB, Sun HB, Cardoso L (2012) High resolution micro arthrography of hard and soft tissues in a murine model. Osteoarthritis Cartilage 20(9):1011–1019. doi: 10.1016/j.joca.2012.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guermazi A, Roemer FW, Hayashi D, Crema MD, Niu J, Zhang Y, Marra MD, Katur A, Lynch JA, El-Khoury GY, Baker K, Hughes LB, Nevitt MC, Felson DT (2011) Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 70(5):805–811. doi: 10.1136/ard.2010.139618 PubMedCrossRefGoogle Scholar
  49. Guyton GP, Brand RA (2002) Apparent spontaneous joint restoration in hip osteoarthritis. Clin Orthop Relat Res 404:302–307CrossRefGoogle Scholar
  50. Haringman JJ, Smeets TJ, Reinders-Blankert P, Tak PP (2006) Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis 65(3):294–300. doi: 10.1136/ard.2005.037176 PubMedCrossRefGoogle Scholar
  51. Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146(3):185–196. doi: 10.1016/j.clim.2012.12.011 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI, Oreffo RO, Marcu KB, Goldring MB (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288(14):10061–10072. doi: 10.1074/jbc.M112.421156 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heinegard D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7(1):50–56. doi: 10.1038/nrrheum.2010.198 PubMedCrossRefGoogle Scholar
  54. Henrotin Y (2014) Does signaling pathway inhibition hold therapeutic promise for osteoarthritis? Joint Bone Spine 81(4):281–283. doi: 10.1016/j.jbspin.2014.03.002 PubMedCrossRefGoogle Scholar
  55. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 41(5):891–899. doi: 10.1002/1529-0131(199805)41:5<891::AID-ART17>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  56. Hill CL, Hunter DJ, Niu J, Clancy M, Guermazi A, Genant H, Gale D, Grainger A, Conaghan P, Felson DT (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66(12):1599–1603. doi: 10.1136/ard.2006.067470 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ho L, Ali SA, Al-Jazrawe M, Kandel R, Wunder JS, Alman BA (2013) Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene 32(47):5388–5396. doi: 10.1038/onc.2012.588 PubMedCrossRefGoogle Scholar
  58. Holers VM (2014) Complement and its receptors: new insights into human disease. Annu Rev Immunol 32:433–459. doi: 10.1146/annurev-immunol-032713-120154 PubMedCrossRefGoogle Scholar
  59. Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15(11):375. doi: 10.1007/s11926-013-0375-6 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hsueh MF, Onnerfjord P, Kraus VB (2014) Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol 39:56–66. doi: 10.1016/j.matbio.2014.08.012 PubMedCrossRefGoogle Scholar
  61. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, Guermazi A, Genant H, Gale D, Felson DT (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54(5):1529–1535. doi: 10.1002/art.21789 PubMedCrossRefGoogle Scholar
  62. Hunter DJ, Eckstein F, Kraus VB, Losina E, Sandell L, Guermazi A (2013) Imaging biomarker validation and qualification report: sixth OARSI Workshop on Imaging in Osteoarthritis combined with third OA Biomarkers Workshop. Osteoarthritis Cartilage 21(7):939–942. doi: 10.1016/j.joca.2013.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hunziker EB, Lippuner K, Shintani N (2014) How best to preserve and reveal the structural intricacies of cartilaginous tissue. Matrix Biol 39:33–43. doi: 10.1016/j.matbio.2014.08.010 PubMedCrossRefGoogle Scholar
  64. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35(10):581–588PubMedCrossRefGoogle Scholar
  65. Jay GD, Waller KA (2014) The biology of lubricin: near frictionless joint motion. Matrix Biol 39:17–24. doi: 10.1016/j.matbio.2014.08.008 PubMedCrossRefGoogle Scholar
  66. Jones HP, Appleyard RC, Mahajan S, Murrell GA (2003) Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med 33(14):1075–1089PubMedCrossRefGoogle Scholar
  67. Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F (1998) Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 25(11):2187–2194PubMedGoogle Scholar
  68. Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH, Chun JS (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743. doi: 10.1016/j.cell.2014.01.007 PubMedCrossRefGoogle Scholar
  69. Kloppenburg M (2014) Hand osteoarthritis-nonpharmacological and pharmacological treatments. Nat Rev Rheumatol 10(4):242–251. doi: 10.1038/nrrheum.2013.214 PubMedCrossRefGoogle Scholar
  70. Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA (2009) Articular chondrocytes express connexin 43 hemichannels and P2 receptors – a putative mechanoreceptor complex involving the primary cilium? J Anat 214(2):275–283. doi: 10.1111/j.1469-7580.2008.01021.x PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ko FC, Dragomir C, Plumb DA, Goldring SR, Wright TM, Goldring MB, van der Meulen MC (2013) In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum 65(6):1569–1578. doi: 10.1002/art.37906 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ko FC, Dragomir CL, Plumb DA, Hsia AW, Adebayo OO, Goldring SR, Wright TM, Goldring MB, van der Meulen MC (2016) Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. J Orthop Res. doi: 10.1002/jor.23204 PubMedCentralGoogle Scholar
  73. Konttinen YT, Ceponis A, Meri S, Vuorikoski A, Kortekangas P, Sorsa T, Sukura A, Santavirta S (1996) Complement in acute and chronic arthritides: assessment of C3c, C9, and protectin (CD59) in synovial membrane. Ann Rheum Dis 55(12):888–894PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kothari A, Guermazi A, Chmiel JS, Dunlop D, Song J, Almagor O, Marshall M, Cahue S, Prasad P, Sharma L (2010) Within-subregion relationship between bone marrow lesions and subsequent cartilage loss in knee osteoarthritis. Arthritis Care Res (Hoboken) 62(2):198–203. doi: 10.1002/acr.20068 Google Scholar
  75. Lafeber FP, van Spil WE (2013) Osteoarthritis year 2013 in review: biomarkers; reflecting before moving forward, one step at a time. Osteoarthritis Cartilage 21(10):1452–1464. doi: 10.1016/j.joca.2013.08.012 PubMedCrossRefGoogle Scholar
  76. Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59(3):272–278PubMedGoogle Scholar
  77. Leijten JC, Emons J, Sticht C, van Gool S, Decker E, Uitterlinden A, Rappold G, Hofman A, Rivadeneira F, Scherjon S, Wit JM, van Meurs J, van Blitterswijk CA, Karperien M (2012) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64(10):3302–3312. doi: 10.1002/art.34535 PubMedCrossRefGoogle Scholar
  78. Lewiecki EM (2014) Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 6(2):48–57. doi: 10.1177/1759720X13510479 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Leydet-Quilici H, Le Corroller T, Bouvier C, Giorgi R, Argenson JN, Champsaur P, Pham T, de Paula AM, Lafforgue P (2010) Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations. Osteoarthritis Cartilage 18(11):1429–1435. doi: 10.1016/j.joca.2010.08.008 PubMedCrossRefGoogle Scholar
  80. Little CB, Hunter DJ (2013) Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol 9(8):485–497. doi: 10.1038/nrrheum.2013.72 PubMedCrossRefGoogle Scholar
  81. Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11(1):35–44. doi: 10.1038/nrrheum.2014.162 PubMedCrossRefGoogle Scholar
  82. Loeser RF (2013) Aging processes and the development of osteoarthritis. Curr Opin Rheumatol 25(1):108–113. doi: 10.1097/BOR.0b013e32835a9428 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Loeser RF (2014) Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol 39:11–16. doi: 10.1016/j.matbio.2014.08.007 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012a) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707. doi: 10.1002/art.34453 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan MF, Ferguson CM, Chou J, Leng X, Fetrow JS (2012b) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64(3):705–717. doi: 10.1002/art.33388 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan M, Ferguson C, Fetrow JS (2013) Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One 8(1):e54633. doi: 10.1371/journal.pone.0054633 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Loeuille D, Chary-Valckenaere I, Champigneulle J, Rat AC, Toussaint F, Pinzano-Watrin A, Goebel JC, Mainard D, Blum A, Pourel J, Netter P, Gillet P (2005) Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum 52(11):3492–3501. doi: 10.1002/art.21373 PubMedCrossRefGoogle Scholar
  88. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769PubMedCrossRefGoogle Scholar
  89. Lohmander LS, Hellot S, Dreher D, Krantz EF, Kruger DS, Guermazi A, Eckstein F (2014) Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 66(7):1820–1831. doi: 10.1002/art.38614 CrossRefGoogle Scholar
  90. Lories RJ, Corr M, Lane NE (2013) To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol 9(6):328–339. doi: 10.1038/nrrheum.2013.25 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lotz MK, Kraus VB (2010) New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12(3):211. doi: 10.1186/ar3046, ar3046 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lotz M, Martel-Pelletier J, Christiansen C, Brandi ML, Bruyere O, Chapurlat R, Collette J, Cooper C, Giacovelli G, Kanis JA, Karsdal MA, Kraus V, Lems WF, Meulenbelt I, Pelletier JP, Raynauld JP, Reiter-Niesert S, Rizzoli R, Sandell LJ, Van Spil WE, Reginster JY (2013) Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 72(11):1756–1763. doi: 10.1136/annrheumdis-2013-203726 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244. doi: 10.1016/j.knee.2008.11.004 PubMedCrossRefGoogle Scholar
  94. Lyons TJ, McClure SF, Stoddart RW, McClure J (2006) The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord 7:52. doi: 10.1186/1471-2474-7-52 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mabey T, Honsawek S, Tanavalee A, Wilairatana V, Yuktanandana P, Saetan N, Zhan D (2014) Plasma and synovial fluid sclerostin are inversely associated with radiographic severity of knee osteoarthritis. Clin Biochem 47(7–8):547–551. doi: 10.1016/j.clinbiochem.2014.03.011 PubMedCrossRefGoogle Scholar
  96. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8(6):358–366. doi: 10.1038/nrrheum.2012.36 PubMedCrossRefGoogle Scholar
  97. Malfait AM, Little CB, McDougall JJ (2013) A commentary on modelling osteoarthritis pain in small animals. Osteoarthritis Cartilage 21(9):1316–1326. doi: 10.1016/j.joca.2013.06.003 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB (2010) NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 11(5):599–613PubMedPubMedCentralCrossRefGoogle Scholar
  99. Matthews GL, Hunter DJ (2011) Emerging drugs for osteoarthritis. Expert Opin Emerg Drugs 16(3):479–491. doi: 10.1517/14728214.2011.576670 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mayan MD, Gago-Fuentes R, Carpintero-Fernandez P, Fernandez-Puente P, Filgueira-Fernandez P, Goyanes N, Valiunas V, Brink PR, Goldberg GS, Blanco FJ (2015) Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis. Ann Rheum Dis 74(1):275–284. doi: 10.1136/annrheumdis-2013-204244 PubMedCrossRefGoogle Scholar
  101. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C (2007) Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis. Osteoarthritis Cartilage 15(2):179–186PubMedCrossRefGoogle Scholar
  102. Meunier A, Odensten M, Good L (2007) Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand J Med Sci Sports 17(3):230–237. doi: 10.1111/j.1600-0838.2006.00547.x PubMedGoogle Scholar
  103. Mobasheri A (2013a) The future of osteoarthritis therapeutics: emerging biological therapy. Curr Rheumatol Rep 15(12):385. doi: 10.1007/s11926-013-0385-4 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mobasheri A (2013b) The future of osteoarthritis therapeutics: targeted pharmacological therapy. Curr Rheumatol Rep 15(10):364. doi: 10.1007/s11926-013-0364-9 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mori Y, Saito T, Chang SH, Kobayashi H, Ladel CH, Guehring H, Chung UI, Kawaguchi H (2014) Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem 289(14):10192–10200. doi: 10.1074/jbc.M113.524090 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Nair A, Kanda V, Bush-Joseph C, Verma N, Chubinskaya S, Mikecz K, Glant TT, Malfait AM, Crow MK, Spear GT, Finnegan A, Scanzello CR (2012) Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14. Arthritis Rheum 64(7):2268–2277. doi: 10.1002/art.34495 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Nam J, Aguda BD, Rath B, Agarwal S (2009) Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One 4(4):e5262. doi: 10.1371/journal.pone.0005262 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nguyen J, Tang SY, Nguyen D, Alliston T (2013) Load regulates bone formation and Sclerostin expression through a TGFbeta-dependent mechanism. PLoS One 8(1):e53813. doi: 10.1371/journal.pone.0053813 PubMedPubMedCentralCrossRefGoogle Scholar
  109. O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111(4):1316–1321. doi: 10.1073/pnas.1319569111 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Oh H, Chun CH, Chun JS (2012) Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 64(8):2568–2578. doi: 10.1002/art.34481 PubMedCrossRefGoogle Scholar
  111. Olex AL, Turkett WH, Fetrow JS, Loeser RF (2014) Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis. Gene 542(1):38–45. doi: 10.1016/j.gene.2014.03.022 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Onnerfjord P, Khabut A, Reinholt FP, Svensson O, Heinegard D (2012) Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem 287(23):18913–18924. doi: 10.1074/jbc.M111.298968 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Otero M, Goldring MB (2007) Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res Ther 9(5):220. doi: 10.1186/ar2292 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27(10):1347–1352. doi: 10.1002/jor.20883 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pan J, Wang B, Li W, Zhou X, Scherr T, Yang Y, Price C, Wang L (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51(2):212–217. doi: 10.1016/j.bone.2011.11.030 PubMedCrossRefGoogle Scholar
  116. Pap T, Bertrand J (2013) Syndecans in cartilage breakdown and synovial inflammation. Nat Rev Rheumatol 9(1):43–55. doi: 10.1038/nrrheum.2012.178 PubMedCrossRefGoogle Scholar
  117. Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, Sculco TP, Crow MK (2007) Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage 15(5):516–523. doi: 10.1016/j.joca.2006.10.010 PubMedCrossRefGoogle Scholar
  118. Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N, Wu C, Agarwal S (2010) Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther 12(3):R106. doi: 10.1186/ar3039 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. doi: 10.1155/2010/672395 PubMedPubMedCentralGoogle Scholar
  120. Pottenger LA, Phillips FM, Draganich LF (1990) The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum 33(6):853–858PubMedCrossRefGoogle Scholar
  121. Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA (2011) Characterizing a novel and adjustable noninvasive murine joint loading model. Arthritis Rheum 63(1):137–147. doi: 10.1002/art.27765 PubMedCrossRefGoogle Scholar
  122. Poulet B, Ulici V, Stone TC, Pead M, Gburcik V, Constantinou E, Palmer DB, Beier F, Timmons JA, Pitsillides AA (2012) Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. Arthritis Rheum 64(10):3256–3266. doi: 10.1002/art.34572 PubMedCrossRefGoogle Scholar
  123. Pulsatelli L, Addimanda O, Brusi V, Pavloska B, Meliconi R (2013) New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis 4(1):23–43. doi: 10.1177/2040622312462734 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Punzi L, Frigato M, Frallonardo P, Ramonda R (2010) Inflammatory osteoarthritis of the hand. Best Pract Res Clin Rheumatol 24(3):301–312. doi: 10.1016/j.berh.2009.12.007 PubMedCrossRefGoogle Scholar
  125. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40Google Scholar
  126. Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2(3):221–234. doi: 10.1002/jor.1100020303 PubMedCrossRefGoogle Scholar
  127. Rai MF, Patra D, Sandell LJ, Brophy RH (2013) Transcriptome analysis of injured human meniscus reveals a distinct phenotype of meniscus degeneration with aging. Arthritis Rheum 65(8):2090–2101. doi: 10.1002/art.37984 PubMedCrossRefGoogle Scholar
  128. Ritter SY, Subbaiah R, Bebek G, Crish J, Scanzello CR, Krastins B, Sarracino D, Lopez MF, Crow MK, Aigner T, Goldring MB, Goldring SR, Lee DM, Gobezie R, Aliprantis AO (2013) Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum 65(4):981–992. doi: 10.1002/art.37823 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Roemer FW, Hunter DJ, Guermazi A (2009) MRI-based semiquantitative assessment of subchondral bone marrow lesions in osteoarthritis research. Osteoarthritis Cartilage 17(3):414–415. doi: 10.1016/j.joca.2008.07.019; author reply 416–417PubMedCrossRefGoogle Scholar
  130. Roemer FW, Guermazi A, Felson DT, Niu J, Nevitt MC, Crema MD, Lynch JA, Lewis CE, Torner J, Zhang Y (2011) Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 70(10):1804–1809. doi: 10.1136/ard.2011.150243 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Roemer FW, Kwoh CK, Hannon MJ, Hunter DJ, Eckstein F, Fujii T, Boudreau RM, Guermazi A (2015) What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheum 67(8):2085–2096. doi: 10.1002/art.39176 CrossRefGoogle Scholar
  132. Roos EM (2005) Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol 17(2):195–200PubMedCrossRefGoogle Scholar
  133. Roudier M, Li X, Niu QT, Pacheco E, Pretorius JK, Graham K, Yoon BR, Gong J, Warmington K, Ke HZ, Black RA, Hulme J, Babij P (2013) Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. Arthritis Rheum 65(3):721–731. doi: 10.1002/art.37802 PubMedCrossRefGoogle Scholar
  134. Ruan MZ, Erez A, Guse K, Dawson B, Bertin T, Chen Y, Jiang MM, Yustein J, Gannon F, Lee BH (2013) Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 5(176):176ra134. doi: 10.1126/scitranslmed.3005409 CrossRefGoogle Scholar
  135. Ruhlen R, Marberry K (2014) The chondrocyte primary cilium. Osteoarthritis Cartilage 22(8):1071–1076. doi: 10.1016/j.joca.2014.05.011 PubMedCrossRefGoogle Scholar
  136. Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung UI, Kawaguchi H (2010) Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med 16(6):678–686. doi: 10.1038/nm.2146 PubMedCrossRefGoogle Scholar
  137. Saito M, Sasho T, Yamaguchi S, Ikegawa N, Akagi R, Muramatsu Y, Mukoyama S, Ochiai N, Nakamura J, Nakagawa K, Nakajima A, Takahashi K (2012) Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model. Osteoarthritis Cartilage 20(12):1574–1582. doi: 10.1016/j.joca.2012.08.023 PubMedCrossRefGoogle Scholar
  138. Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58(2):442–455. doi: 10.1002/art.23159 PubMedCrossRefGoogle Scholar
  139. Sandell LJ (2012) Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol 8(2):77–89. doi: 10.1038/nrrheum.2011.199 PubMedGoogle Scholar
  140. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone. doi: 10.1016/j.bone.2012.02.012, S8756-3282(12)00068-3 [pii]PubMedPubMedCentralGoogle Scholar
  141. Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E, Potter HG, Mandl L, Marx R, Rodeo S, Goldring SR, Crow MK (2009) Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage 17(8):1040–1048. doi: 10.1016/j.joca.2009.02.011, S1063-4584(09)00057-0 [pii]PubMedCrossRefGoogle Scholar
  142. Scanzello CR, McKeon B, Swaim BH, DiCarlo E, Asomugha EU, Kanda V, Nair A, Lee DM, Richmond JC, Katz JN, Crow MK, Goldring SR (2011) Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum 63(2):391–400. doi: 10.1002/art.30137 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Scanzello CR, Albert AS, DiCarlo E, Rajan KB, Kanda V, Asomugha EU, Swaim BH, Katz JN, Goldring SR, Richmond JC, McKeon B (2013) The influence of synovial inflammation and hyperplasia on symptomatic outcomes up to 2 years post-operatively in patients undergoing partial meniscectomy. Osteoarthritis Cartilage 21(9):1392–1399. doi: 10.1016/j.joca.2013.05.011 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Schelbergen RF, Blom AB, van den Bosch MH, Sloetjes A, Abdollahi-Roodsaz S, Schreurs BW, Mort JS, Vogl T, Roth J, van den Berg WB, van Lent PL (2012) Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum 64(5):1477–1487. doi: 10.1002/art.33495 PubMedCrossRefGoogle Scholar
  145. Segawa H, Omori G, Koga Y (2001) Long-term results of non-operative treatment of anterior cruciate ligament injury. Knee 8(1):5–11PubMedCrossRefGoogle Scholar
  146. Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP, Robinson WH (2012) Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther 14(1):R7. doi: 10.1186/ar3555 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Stiebel M, Miller LE, Block JE (2014) Post-traumatic knee osteoarthritis in the young patient: therapeutic dilemmas and emerging technologies. Open Access J Sports Med 5:73–79. doi: 10.2147/OAJSM.S61865 PubMedPubMedCentralGoogle Scholar
  148. Stoppiello LA, Mapp PI, Wilson D, Hill R, Scammell BE, Walsh DA (2014) Structural associations of symptomatic knee osteoarthritis. Arthritis Rheum 66(11):3018–3027. doi: 10.1002/art.38778 CrossRefGoogle Scholar
  149. Suri S, Walsh DA (2012) Osteochondral alterations in osteoarthritis. Bone 51(2):204–211. doi: 10.1016/j.bone.2011.10.010 PubMedCrossRefGoogle Scholar
  150. Taljanovic MS, Graham AR, Benjamin JB, Gmitro AF, Krupinski EA, Schwartz SA, Hunter TB, Resnick DL (2008) Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol 37(5):423–431. doi: 10.1007/s00256-008-0446-3 PubMedCrossRefGoogle Scholar
  151. Thakur M, Dickenson AH, Baron R (2014) Osteoarthritis pain: nociceptive or neuropathic? Nat Rev Rheumatol 10(6):374–380. doi: 10.1038/nrrheum.2014.47 PubMedCrossRefGoogle Scholar
  152. Thompson CL, Wiles A, Poole CA, Knight MM (2016) Lithium chloride modulates chondrocyte primary cilia and inhibits Hedgehog signaling. FASEB J 30(2):716–726. doi: 10.1096/fj.15-274944 PubMedCrossRefGoogle Scholar
  153. Tonge DP, Pearson MJ, Jones SW (2014) The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 22(5):609–621. doi: 10.1016/j.joca.2014.03.004 PubMedCrossRefGoogle Scholar
  154. van den Bosch MH, Blom AB, van Lent PL, van Beuningen HM, Blaney Davidson EN, van der Kraan PM, van den Berg WB (2014) Canonical Wnt signaling skews TGF-beta signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal 26(5):951–958. doi: 10.1016/j.cellsig.2014.01.021 PubMedCrossRefGoogle Scholar
  155. van der Kraan PM (2014) Age-related alterations in TGF beta signaling as a causal factor of cartilage degeneration in osteoarthritis. Biomed Mater Eng 24(1 Suppl):75–80. doi: 10.3233/BME-140976 PubMedGoogle Scholar
  156. van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthritis Cartilage 15(3):237–244PubMedCrossRefGoogle Scholar
  157. van der Kraan PM, van den Berg WB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20(3):223–232. doi: 10.1016/j.joca.2011.12.003 PubMedCrossRefGoogle Scholar
  158. van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P (2012) Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res 347(1):257–265. doi: 10.1007/s00441-011-1194-6 PubMedCrossRefGoogle Scholar
  159. Vincent TL (2012) Explaining the fibroblast growth factor paradox in osteoarthritis: lessons from conditional knockout mice. Arthritis Rheum 64(12):3835–3838. doi: 10.1002/art.34648 PubMedCrossRefGoogle Scholar
  160. Vincent TL, Williams RO, Maciewicz R, Silman A, Garside P (2012) Mapping pathogenesis of arthritis through small animal models. Rheumatology 51(11):1931–1941. doi: 10.1093/rheumatology/kes035 PubMedCrossRefGoogle Scholar
  161. Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD (2013) Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A 110(15):5852–5857. doi: 10.1073/pnas.1219289110 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Franses RE, Mapp PI, Wilson D (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford) 49(10):1852–1861. doi: 10.1093/rheumatology/keq188 CrossRefGoogle Scholar
  163. Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, Hwang I, Wong HH, Punzi L, Encarnacion A, Shamloo M, Goodman SB, Wyss-Coray T, Goldring SR, Banda NK, Thurman JM, Gobezie R, Crow MK, Holers VM, Lee DM, Robinson WH (2011) Identification of a central role for complement in osteoarthritis. Nat Med 17(12):1674–1679. doi: 10.1038/nm.2543 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, Chen D (2013) MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 15(1):R5. doi: 10.1186/ar4133 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, Knight MM (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J 26(4):1663–1671. doi: 10.1096/fj.11-193649 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wilson AJ, Murphy WA, Hardy DC, Totty WG (1988) Transient osteoporosis: transient bone marrow edema? Radiology 167(3):757–760. doi: 10.1148/radiology.167.3.3363136 PubMedCrossRefGoogle Scholar
  167. Wilusz RE, Sanchez-Adams J, Guilak F (2014) The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32. doi: 10.1016/j.matbio.2014.08.009 PubMedCrossRefGoogle Scholar
  168. Wojdasiewicz P, Poniatowski LA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459. doi: 10.1155/2014/561459 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Xu L, Polur I, Servais JM, Hsieh S, Lee PL, Goldring MB, Li Y (2011) Intact pericellular matrix of articular cartilage is required for unactivated discoidin domain receptor 2 in the mouse model. Am J Pathol 179(3):1338–1346. doi: 10.1016/j.ajpath.2011.05.023 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xu L, Golshirazian I, Asbury BJ, Li Y (2014) Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol 29(5):609–618PubMedGoogle Scholar
  171. Yan D, Chen D, Cool SM, van Wijnen AJ, Mikecz K, Murphy G, Im HJ (2011) Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther 13(4):R130. doi: 10.1186/ar3441 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS (2010) Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 16(6):687–693. doi: 10.1038/nm.2153 PubMedCrossRefGoogle Scholar
  173. Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215(3):835–840. doi: 10.1148/radiology.215.3.r00jn05835 PubMedCrossRefGoogle Scholar
  174. Zhang R, Fang H, Chen Y, Shen J, Lu H, Zeng C, Ren J, Zeng H, Li Z, Chen SL, Cai D, Zhao Q (2012) Gene expression analysis of subchondral bone in early experimental osteoarthritis by microarray. PLoS One 7:e32356. dol:32310.31371Google Scholar
  175. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X (2013) Inhibition of TGF-[beta] signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19 (6):704–712. doi: 10.1038/nm.3143. – supplementary-information

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Mary B. Goldring
    • 1
    Email author
  • Kirsty L. Culley
    • 1
  • Miguel Otero
    • 1
  1. 1.Hospital for Special Surgery Research Institute and Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations